Yang Baiyu, Chen Ling, Xue Songlin, Sun Hao, Feng Kun, Chen Yufeng, Zhang Xiang, Xiao Long, Qin Yongze, Zhong Jun, Deng Zhao, Jiao Yan, Peng Yang
Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 215006, Suzhou, P. R. China.
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow Municipal Laboratory for Low Carbon Technologies and Industries, Soochow University, 215123, Suzhou, Jiangsu, P. R. China.
Nat Commun. 2022 Aug 31;13(1):5122. doi: 10.1038/s41467-022-32740-z.
Electrocatalytic reduction of CO into alcohols of high economic value offers a promising route to realize resourceful CO utilization. In this study, we choose three model bicentric copper complexes based on the expanded and fluorinated porphyrin structure, but different spatial and coordination geometry, to unravel their structure-property-performance correlation in catalyzing electrochemical CO reduction reactions. We show that the complexes with higher intramolecular tension and coordination asymmetry manifests a lower electrochemical stability and thus more active Cu centers, which can be reduced during electrolysis to form Cu clusters accompanied by partially-reduced or fragmented ligands. We demonstrate the hybrid structure of Cu cluster and partially reduced O-containing hexaphyrin ligand is highly potent in converting CO into alcohols, up to 32.5% ethanol and 18.3% n-propanol in Faradaic efficiencies that have been rarely reported. More importantly, we uncover an interplay between the inorganic and organic phases to synergistically produce alcohols, of which the intermediates are stabilized by a confined space to afford extra O-Cu bonding. This study underlines the exploitation of structure-dependent electrochemical property to steer the CO reduction pathway, as well as a potential generic tactic to target alcohol synthesis by constructing organic/inorganic Cu hybrids.
将一氧化碳电催化还原为具有高经济价值的醇类,为实现资源丰富的一氧化碳利用提供了一条有前景的途径。在本研究中,我们选择了三种基于扩展和氟化卟啉结构但具有不同空间和配位几何结构的双中心铜配合物,以揭示它们在催化电化学一氧化碳还原反应中的结构-性质-性能关系。我们表明,具有较高分子内张力和配位不对称性的配合物表现出较低的电化学稳定性,从而具有更多活性铜中心,这些铜中心在电解过程中可以被还原形成铜簇,并伴有部分还原或碎片化的配体。我们证明,铜簇与部分还原的含氧化六卟啉配体的混合结构在将一氧化碳转化为醇类方面具有很高的效率,法拉第效率高达32.5%的乙醇和18.3%的正丙醇,这是很少有报道的。更重要的是,我们发现了无机相和有机相之间的相互作用,协同产生醇类,其中中间体通过受限空间得到稳定,以提供额外的氧-铜键。本研究强调了利用结构依赖的电化学性质来引导一氧化碳还原途径,以及通过构建有机/无机铜杂化物来靶向醇类合成的潜在通用策略。