Suppr超能文献

肿瘤微环境的研究进展:3D 生物打印的应用和挑战。

Advances in tumor microenvironment: Applications and challenges of 3D bioprinting.

机构信息

The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.

School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.

出版信息

Biochem Biophys Res Commun. 2024 Oct 20;730:150339. doi: 10.1016/j.bbrc.2024.150339. Epub 2024 Jul 8.

Abstract

The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.

摘要

肿瘤微环境(TME)在肿瘤疾病的治疗中起着关键作用,因为它涉及多种细胞成分和细胞外基质的复杂相互作用。这个动态的生态系统在许多方面对传统的研究方法提出了严峻的挑战,例如研究成本高、转化效率低、重现性差和建模成功率低。这些挑战需要寻找更合适的研究方法来准确模拟 TME,而 3D 生物打印技术的出现是变革性的,是对这些传统方法的重要补充,可以精确控制 TME 内细胞、生物分子和基质支架的分布。该技术利用数字设计,可以实现高精度的个性化研究,提供必要的实验灵活性。作为体外和体内研究之间的重要桥梁,3D 生物打印有助于实现癌细胞的真实 3D 培养。本文深入探讨了 3D 生物打印的最新进展,包括各种方法、生物材料选择和各种 3D 肿瘤模型。探讨了当前的挑战,包括有限的生物材料选择、打印精度限制、重现性低和伦理考虑等,有助于更深入地理解这些问题。尽管存在这些挑战,但该技术在模拟肿瘤组织、推动个性化医疗和构建高分辨率器官模型方面具有巨大的潜力,为肿瘤学研究带来了变革性的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验