Suppr超能文献

创新的 3D 生物打印方法在推进脑科学和医学中的应用:文献综述。

Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review.

机构信息

Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, R3E 0W2, Canada.

Rady Faculty of Health Science, Dental Biomaterials Research Lab, University of Manitoba, Winnipeg, R3E 0W2, Canada.

出版信息

Biomed Phys Eng Express. 2024 Sep 25;10(6). doi: 10.1088/2057-1976/ad795c.

Abstract

The rapid advancements in 3D printing technology have revolutionized the field of tissue engineering, particularly in the development of neural tissues for the treatment of nervous system diseases. Brain neural tissue, composed of neurons and glial cells, plays a crucial role in the functioning of the brain, spinal cord, and peripheral nervous system by transmitting nerve impulses and processing information. By leveraging 3D bioprinting and bioinks, researchers can create intricate neural scaffolds that facilitate the proliferation and differentiation of nerve cells, thereby promoting the repair and regeneration of damaged neural tissues. This technology allows for the precise spatial arrangement of various cell types and scaffold materials, enabling the construction of complex neural tissue models that closely mimic the natural architecture of the brain. Human-induced pluripotent stem cells (hiPSCs) have emerged as a groundbreaking tool in neuroscience research and the potential treatment of neurological diseases. These cells can differentiate into diverse cell types within the nervous system, including neurons, astrocytes, microglia, oligodendrocytes, and Schwann cells, providing a versatile platform for studying neural networks, neurodevelopment, and neurodegenerative disorders. The use of hiPSCs also opens new avenues for personalized medicine, allowing researchers to model diseases and develop targeted therapies based on individual patient profiles. Despite the promise of direct hiPSC injections for therapeutic purposes, challenges such as poor localization and limited integration have led to the exploration of biomaterial scaffolds as supportive platforms for cell delivery and tissue regeneration. This paper reviews the integration of 3D bioprinting technologies and bioink materials in neuroscience applications, offering a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues. These advancements provide robust tools for modelling, repair, and drug screening applications. The review highlights current research, identifies research gaps, and offers recommendations for future studies on 3D bioprinting in neuroscience. The investigation demonstrates the significant potential of 3D bioprinting to fabricate brain-like tissue constructs, which holds great promise for regenerative medicine and drug testing models. This approach offers new avenues for studying brain diseases and potential treatments.

摘要

3D 打印技术的快速发展彻底改变了组织工程领域,特别是在开发用于治疗神经系统疾病的神经组织方面。脑神经网络由神经元和神经胶质细胞组成,通过传递神经冲动和处理信息,在大脑、脊髓和周围神经系统的功能中起着至关重要的作用。通过利用 3D 生物打印和生物墨水,研究人员可以创建复杂的神经支架,促进神经细胞的增殖和分化,从而促进受损神经组织的修复和再生。这项技术可以实现各种细胞类型和支架材料的精确空间排列,构建出与大脑的自然结构紧密相似的复杂神经组织模型。人诱导多能干细胞(hiPSC)在神经科学研究和神经疾病潜在治疗中已成为一项突破性的工具。这些细胞可以在神经系统内分化为多种细胞类型,包括神经元、星形胶质细胞、小胶质细胞、少突胶质细胞和施万细胞,为研究神经网络、神经发育和神经退行性疾病提供了一个多功能平台。hiPSC 的使用也为个性化医疗开辟了新的途径,使研究人员能够根据个体患者的情况来模拟疾病并开发靶向治疗方法。尽管直接注射 hiPSC 用于治疗具有很大的潜力,但挑战如定位不佳和整合有限,导致探索生物材料支架作为细胞递送和组织再生的支持平台。本文综述了 3D 生物打印技术和生物墨水材料在神经科学应用中的整合,为创建复杂的大脑和组织架构提供了独特的平台,这些架构模拟了天然组织的机械、结构和生化特性。这些进展为建模、修复和药物筛选应用提供了强大的工具。该综述强调了当前的研究,确定了研究差距,并为未来神经科学中的 3D 生物打印研究提出了建议。研究表明,3D 生物打印在制造类脑组织方面具有巨大的潜力,为再生医学和药物测试模型带来了希望。这种方法为研究大脑疾病和潜在治疗方法提供了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验