National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
BMC Microbiol. 2024 Jul 20;24(1):271. doi: 10.1186/s12866-024-03410-5.
Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes.
The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs.
In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.
由于纳米硒(SeNPs)具有低毒性、高活性和稳定性等特点,越来越受到关注。此外,地衣芽孢杆菌作为一种益生菌,在医学、饲料加工和农药等领域取得了显著的研究成果,引起了广泛的关注。因此,评估益生菌和 SeNPs 的活性至关重要。利用益生菌合成 SeNPs,实现大规模工业化,是 SeNPs 合成领域的一个热点,也是目前最有前途的合成方法。为了降低生产成本,最大限度地提高 SeNPs 的产量,本研究选择了富含营养、成本效益高、易于获得的农业副产品作为培养基成分。这种方法不仅满足了工业生产的要求,而且减轻了对下游工艺的影响。
实验结果表明,地衣芽孢杆菌 F1 合成的 SeNPs 呈球形,直径为 110-170nm,稳定性高。地衣芽孢杆菌 F1 的次生代谢产物和合成的 SeNPs 均具有显著的自由基清除能力。为了通过地衣芽孢杆菌 F1 的发酵获得大量的 SeNPs,通过单因素实验和响应面法(RSM)确定了关键因素,包括 2%的种子液接种量、37℃的温度和 180rpm 的搅拌速度。此外,在优化过程中的关键因素是玉米粉(11.18g/L)、豆粕(10.34g/L)和 NaCl(10.68g/L)。在验证优化条件和培养基后,地衣芽孢杆菌 F1 可以从 5mmol/L 亚硒酸钠中几乎 100.00%合成 SeNPs。随后,在 5L 发酵罐中使用优化的培养基进行中试验证,缩短了发酵时间,显著降低了生产成本。
本研究成功实现了益生菌地衣芽孢杆菌 F1 高效生产 SeNPs,显著降低了发酵成本。该菌株的实际应用探索具有重要的潜力,并为促进微生物合成 SeNPs 的工业化实施提供了有价值的指导。