文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

姜酚与二甲双胍联合应用通过靶向 miRNA-146a、miRNA-223、TLR4/TRAF6/NLRP3 炎性小体通路和 HIF-1α对高糖高脂饮食/链脲佐菌素诱导的糖尿病肾病大鼠的肾保护作用。

Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α.

机构信息

Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

出版信息

Biol Res. 2024 Jul 20;57(1):47. doi: 10.1186/s40659-024-00527-9.


DOI:10.1186/s40659-024-00527-9
PMID:39033184
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11265012/
Abstract

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.

摘要

背景:miRNA-146a 和 miRNA-223 是 Toll 样受体 4(TLR4)/肿瘤坏死因子受体相关因子 6(TRAF6)/NOD 样受体家族富含亮氨酸重复序列 3(NLRP3)炎症小体途径的关键表观遗传调节剂,该途径参与糖尿病肾病(DN)的发病机制。目前可用的口服抗糖尿病治疗方法不足以阻止 DN 的发展和进展。因此,本研究旨在评估天然化合物 6-姜酚(GR)单独或与二甲双胍(MET)联合应用于高脂饮食/链脲佐菌素诱导的大鼠 DN 中的肾保护作用,并探讨其潜在的分子机制。

方法:大鼠每日口服给予 6-姜酚(100mg/kg)和二甲双胍(300mg/kg),连续 8 周。采用实时 PCR 法检测 miRNA-146a、miRNA-223、TLR4、TRAF6、核因子-κB(NF-κB)(p65)、NLRP3、半胱天冬酶-1 和缺氧诱导因子-1α(HIF-1α)mRNA 的表达。采用 ELISA 法检测 TLR4、TRAF6、NLRP3、半胱天冬酶-1、肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)肾组织水平。进行肾组织病理检查和纤维连接蛋白及 NF-κB(p65)免疫组化检查。

结果:6-姜酚治疗可显著减轻肾脏组织损伤和纤维化。6-姜酚可上调 miRNA-146a 和 miRNA-223,下调 TLR4、TRAF6、NF-κB(p65)、NLRP3、半胱天冬酶-1、TNF-α、IL-1β、HIF-1α和纤维连接蛋白的肾组织表达。6-姜酚还可改善血脂谱和肾功能,减轻肾脏肥大,增加还原型谷胱甘肽,降低血糖和丙二醛水平。6-姜酚与二甲双胍联合应用的肾保护作用优于单独应用。

结论:6-姜酚通过诱导 miRNA-146a 和 miRNA-223 的表达和抑制 TLR4/TRAF6/NLRP3 炎症小体信号通路,在 DN 中发挥关键的保护作用。6-姜酚作为一种安全、经济、丰富的天然化合物,有望与二甲双胍联合用于糖尿病患者的辅助治疗,以减轻肾脏损伤并阻止 DN 的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/4433e7fe4b02/40659_2024_527_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9b59eb8e8338/40659_2024_527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/8de3da549ce1/40659_2024_527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9c9d94a3a888/40659_2024_527_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/3c3758d33709/40659_2024_527_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/8762d5497572/40659_2024_527_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/eb147a953474/40659_2024_527_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/ba2c39744ed6/40659_2024_527_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/e23a2ffacea9/40659_2024_527_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9635c141ed7b/40659_2024_527_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/4433e7fe4b02/40659_2024_527_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9b59eb8e8338/40659_2024_527_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/8de3da549ce1/40659_2024_527_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9c9d94a3a888/40659_2024_527_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/3c3758d33709/40659_2024_527_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/8762d5497572/40659_2024_527_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/eb147a953474/40659_2024_527_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/ba2c39744ed6/40659_2024_527_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/e23a2ffacea9/40659_2024_527_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/9635c141ed7b/40659_2024_527_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b37/11265012/4433e7fe4b02/40659_2024_527_Fig10_HTML.jpg

相似文献

[1]
Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α.

Biol Res. 2024-7-20

[2]
Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling.

Phytomedicine. 2018-12-17

[3]
The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice.

Biomed Pharmacother. 2018-7-20

[4]
[Curcumin alleviates nuclear factor-κB/NOD-like receptor protein 3 mediated renal injury caused by acute respiratory distress syndrome through reducing mitochondrial oxidative stress].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-4

[5]
Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice.

Int Immunopharmacol. 2018-8-11

[6]
Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome.

Life Sci. 2016-6-3

[7]
Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome.

Phytomedicine. 2018-1-31

[8]
Sarsasapogenin alleviates diabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: In vivo and in vitro study.

Phytomedicine. 2020-8-26

[9]
Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome.

IUBMB Life. 2020-5

[10]
Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway.

Chem Biol Interact. 2018-7-19

引用本文的文献

[1]
Hesperetin and Isoliquiritigenin Attenuate the Progression of Diabetic Nephropathy via Inhibition of NF-κB/NLRP3 Pathways in Type 2 Diabetic Rats.

ACS Omega. 2025-7-30

[2]
Carvedilol-loaded self-nanoemulsifying drug delivery system target diabetic nephropathy: preclinical evidence of antioxidant and antifibrotic effects.

Naunyn Schmiedebergs Arch Pharmacol. 2025-6-18

[3]
Preventive treatment of tripdiolide ameliorates kidney injury in diabetic mice by modulating the Nrf2/NF-κB pathway.

Front Pharmacol. 2025-3-19

[4]
Advances in Understanding Diabetic Kidney Disease Progression and the Mechanisms of Acupuncture Intervention.

Int J Gen Med. 2024-11-27

[5]
Research hotspots and future trends in lipid metabolism in chronic kidney disease: a bibliometric and visualization analysis from 2004 to 2023.

Front Pharmacol. 2024-9-3

本文引用的文献

[1]
Ginger alleviates mechanical hypersensitivity and anxio-depressive behavior in rats with diabetic neuropathy through beneficial actions on gut microbiome composition, mitochondria, and neuroimmune cells of colon and spinal cord.

Nutr Res. 2024-4

[2]
What is the prevalence of chronic kidney disease among hypertensive non-diabetic Egyptian patients attending primary healthcare?

Clin Exp Hypertens. 2023-12-31

[3]
6-gingerol ameliorates weight gain and insulin resistance in metabolic syndrome rats by regulating adipocytokines.

Saudi Pharm J. 2023-3

[4]
The Positive Effect of 6-Gingerol on High-Fat Diet and Streptozotocin-Induced Prediabetic Mice: Potential Pathways and Underlying Mechanisms.

Nutrients. 2023-2-6

[5]
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update.

Life (Basel). 2023-2-15

[6]
The Role of Oxidative Stress-Mediated Inflammation in the Development of T2DM-Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols.

Molecules. 2022-12-18

[7]
Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications.

Metabolites. 2022-12-16

[8]
Increased Expression of Circulating Stress Markers, Inflammatory Cytokines and Decreased Antioxidant Level in Diabetic Nephropathy.

Medicina (Kaunas). 2022-11-7

[9]
Analysis of the Renal Protection and Antioxidative Stress Effects of Panax notoginseng Saponins in Diabetic Nephropathy Mice.

J Immunol Res. 2022

[10]
Hypoxia-Inducible Factors and Diabetic Kidney Disease-How Deep Can We Go?

Int J Mol Sci. 2022-9-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索