Suppr超能文献

模拟社会人口统计学变量对新冠康复后生活质量的相对影响。

Modeling the relative influence of socio-demographic variables on post-acute COVID-19 quality of life.

作者信息

Menkir Tigist F, Citarella Barbara Wanjiru, Sigfrid Louise, Doshi Yash, Reyes Luis Felipe, Calvache Jose A, Kildal Anders Benjamin, Nygaard Anders B, Holter Jan Cato, Panda Prasan Kumar, Jassat Waasila, Merson Laura, Donnelly Christl A, Santillana Mauricio, Buckee Caroline, Verguet Stéphane, Hejazi Nima S

机构信息

Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, USA.

ISARIC, Pandemic Sciences Institute, University of Oxford, UK.

出版信息

medRxiv. 2024 Sep 9:2024.02.21.24303099. doi: 10.1101/2024.02.21.24303099.

Abstract

IMPORTANCE

Post-acute sequelae of SARS-CoV-2, referred to as "long COVID", are a globally pervasive threat. While their many clinical determinants are commonly considered, their plausible social correlates are often overlooked.

OBJECTIVE

To compare social and clinical predictors of differences in quality of life (QoL) with long COVID. Additionally, to measure how much adjusted associations between social factors and long COVID-associated quality of life are unexplained by important clinical intermediates.

DESIGN SETTING AND PARTICIPANTS

Data from the ISARIC long COVID multi-country prospective cohort study. Subjects from Norway, the United Kingdom (UK), and Russia, aged 16 and above, with confirmed acute SARS-CoV-2 infection reporting >= 1 long COVID-associated symptoms 1+ month following infection.

EXPOSURE

The social exposures considered were educational attainment (Norway), employment status (UK and Russia), and female vs male sex (all countries).

MAIN OUTCOME AND MEASURES

Quality of life-adjusted days, or QALDs, with long COVID.

RESULTS

This cohort study included a total of 3891 participants. In all three countries, educational attainment, employment status, and female sex were important predictors of long COVID QALDs. Furthermore, a majority of the estimated relationships between each of these social correlates and long COVID QALDs could not be attributed to key long COVID-predicting comorbidities. In Norway, 90% (95% CI: 77%, 100%) of the adjusted association between the top two quintiles of educational attainment and long COVID QALDs was not explained by clinical intermediates. The same was true for 86% (73%, 100%) and 93% (80%,100%) of the adjusted associations between full-time employment and long COVID QALDs in the United Kingdom (UK) and Russia. Additionally, 77% (46%,100%) and 73% (52%, 94%) of the adjusted associations between female sex and long COVID QALDs in Norway and the UK were unexplained by the clinical mediators.

CONCLUSIONS AND RELEVANCE

This study highlights the role of socio-economic status indicators and female sex, in line with or beyond commonly cited clinical conditions, as predictors of long COVID-associated QoL, and further reveal that other (non-clinical) mechanisms likely drive their observed relationships. Our findings point to the importance of COVID interventions which go further than an exclusive focus on comorbidity management in order to help redress inequalities in experiences with this chronic disease.

摘要

重要性

新型冠状病毒肺炎的急性后遗症,即“长新冠”,是一种全球普遍存在的威胁。虽然人们普遍考虑其众多临床决定因素,但往往忽视其可能存在的社会关联因素。

目的

比较“长新冠”患者生活质量(QoL)差异的社会和临床预测因素。此外,衡量社会因素与“长新冠”相关生活质量之间的调整关联在多大程度上无法由重要的临床中间因素解释。

设计、设置和参与者:来自国际严重急性呼吸道感染和新兴传染病协作网(ISARIC)“长新冠”多国前瞻性队列研究的数据。来自挪威、英国和俄罗斯的16岁及以上受试者,确诊为急性新型冠状病毒肺炎感染,且在感染1个月后报告有≥1种与“长新冠”相关的症状。

暴露因素

所考虑的社会暴露因素包括教育程度(挪威)、就业状况(英国和俄罗斯)以及性别(所有国家)。

主要结局和测量指标

与“长新冠”相关的生活质量调整天数,即QALDs。

结果

这项队列研究共纳入3891名参与者。在所有三个国家中,教育程度、就业状况和女性性别都是“长新冠”QALDs的重要预测因素。此外,这些社会关联因素与“长新冠”QALDs之间的大多数估计关系不能归因于预测“长新冠”的关键合并症。在挪威,教育程度最高的两个五分位数与“长新冠”QALDs之间的调整关联中,90%(95%置信区间:77%,100%)无法由临床中间因素解释。英国和俄罗斯全职就业与“长新冠”QALDs之间的调整关联中,这一比例分别为86%(73%,100%)和93%(80%,100%)。此外,挪威和英国女性性别与“长新冠”QALDs之间的调整关联中,分别有77%(46%,100%)和73%(52%,94%)无法由临床中介因素解释。

结论及相关性

本研究强调了社会经济地位指标和女性性别在作为“长新冠”相关生活质量预测因素方面的作用,无论是否符合或超出通常提及的临床状况,并进一步揭示其他(非临床)机制可能驱动了观察到的关系。我们的研究结果指出了新冠干预措施的重要性,这些措施不应仅仅专注于合并症管理,还应帮助纠正这种慢性病患者经历中的不平等现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e342/11404299/cf805ae8ea96/nihpp-2024.02.21.24303099v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验