Suppr超能文献

化学感受器阵列中的时间反演对称破缺揭示了一种用于增强耗散合作传感的通用机制。

Time-reversal symmetry breaking in the chemosensory array reveals a general mechanism for dissipation-enhanced cooperative sensing.

机构信息

IBM T. J. Watson Research Center, Yorktown Heights, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, USA.

出版信息

Nat Commun. 2024 Oct 15;15(1):8892. doi: 10.1038/s41467-024-52799-0.

Abstract

The Escherichia coli chemoreceptors form an extensive array that achieves cooperative and adaptive sensing of extracellular signals. The receptors control the activity of histidine kinase CheA, which drives a nonequilibrium phosphorylation-dephosphorylation reaction cycle for response regulator CheY. Cooperativity and dissipation are both important aspects of chemotaxis signaling, yet their consequences have only been studied separately. Recent single-cell FRET measurements revealed that kinase activity of the array spontaneously switches between active and inactive states, with asymmetric switching times that signify time-reversal symmetry breaking in the underlying dynamics. Here, we present a nonequilibrium lattice model of the chemosensory array, which demonstrates that the observed asymmetric switching dynamics can only be explained by an interplay between the dissipative reactions within individual core units and the cooperative coupling between neighboring units. Microscopically, the switching time asymmetry originates from irreversible transition paths. The model shows that strong dissipation enables sensitive and rapid signaling response by relieving the speed-sensitivity trade-off, which can be tested by future single-cell experiments. Overall, our model provides a general framework for studying biological complexes composed of coupled subunits that are individually driven by dissipative cycles and the rich nonequilibrium physics within.

摘要

大肠杆菌的化学感受器形成了一个广泛的阵列,实现了对外界信号的协同和适应性感知。这些受体控制组氨酸激酶 CheA 的活性,从而驱动响应调节剂 CheY 的非平衡磷酸化-去磷酸化反应循环。协同作用和耗散都是趋化信号传导的重要方面,但它们的后果仅分别进行了研究。最近的单细胞 FRET 测量揭示了,阵列中的激酶活性自发地在活跃和不活跃状态之间切换,具有不对称的切换时间,表明基础动力学中的时间反转对称性破缺。在这里,我们提出了一个化学感受器阵列的非平衡晶格模型,该模型表明,观察到的不对称切换动力学只能通过单个核心单元内的耗散反应和相邻单元之间的协同耦合之间的相互作用来解释。从微观上看,切换时间的不对称性源于不可逆的跃迁路径。该模型表明,通过缓解速度敏感性的权衡,强耗散能够实现敏感和快速的信号响应,这可以通过未来的单细胞实验进行测试。总的来说,我们的模型为研究由耗散循环和内部丰富的非平衡物理驱动的耦合亚基组成的生物复合物提供了一个通用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5656/11480488/641bfa9758e4/41467_2024_52799_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验