Suppr超能文献

基于炎症衍生和临床指标的缺血性脑卒中恢复预测模型。

Inflammation-Derived and Clinical Indicator-Based Predictive Model for Ischemic Stroke Recovery.

机构信息

Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China.

Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China.

出版信息

J Am Heart Assoc. 2024 Aug 6;13(15):e035609. doi: 10.1161/JAHA.124.035609. Epub 2024 Jul 23.

Abstract

BACKGROUND

Neuroinflammatory responses are closely associated with poststroke prognosis severity. This study aimed to develop a predictive model, combining inflammation-derived markers and clinical indicators, for distinguishing functional outcomes in patients with subacute ischemic stroke.

METHODS AND RESULTS

Based on activities of daily living assessments, ischemic stroke participants were categorized into groups with little effective (LE) recovery and obvious effective (OE) recovery. Initial biocandidates were identified by overlapping differentially expressed proteins from proteomics of clinical serum samples (5 LE, 5 OE, and 6 healthy controls) and differentially expressed genes from an RNA sequence of the ischemic cortex in middle cerebral artery occlusion mice (n=3). Multidimensional validations were conducted in ischemia-reperfusion models and a clinical cohort (15 LE, 11 OE, and 18 healthy controls). Models of robust biocandidates combined with clinical indicators were developed with machine learning in the training data set and prediction in another test data set (15 LE and 11 OE). We identified 194 differentially expressed proteins (LE versus healthy controls) and 174 differentially expressed proteins (OE versus healthy controls) in human serum, and 5121 differentially expressed genes (day 3) and 5906 differentially expressed genes (day 7) in middle cerebral artery occlusion mice cortex. Inflammation-derived biomarkers TIMP1 (tissue inhibitor metalloproteinase-1) and galactosidase-binding protein LGLAS3 (galectin-3) exhibited robust increases under ischemic injury in mice and humans. TIMP1 and LGALS3 coupled with clinical indicators (hemoglobin, low-density lipoprotein cholesterol, and uric acid) were developed into a combined model for differentiating functional outcome with high accuracy (area under the curve, 0.8).

CONCLUSIONS

The combined model is a valuable tool for evaluating prognostic outcomes, and the predictive factors can facilitate development of better treatment strategies.

摘要

背景

神经炎症反应与卒中后预后严重程度密切相关。本研究旨在建立一种预测模型,结合炎症衍生标志物和临床指标,区分急性缺血性卒中患者的功能结局。

方法和结果

根据日常生活活动评估,将缺血性卒中患者分为有效恢复较少(LE)组和有效恢复明显(OE)组。通过重叠临床血清样本蛋白质组学(5 例 LE、5 例 OE 和 6 例健康对照)和大脑中动脉闭塞小鼠缺血皮质 RNA 序列差异表达基因(n=3)来确定初始生物标志物。在缺血再灌注模型和临床队列中进行多维验证(15 例 LE、11 例 OE 和 18 例健康对照)。使用机器学习在训练数据集中建立稳健生物标志物与临床指标相结合的模型,并在另一个测试数据集中进行预测(15 例 LE 和 11 例 OE)。我们在人类血清中鉴定出 194 个差异表达蛋白(LE 与健康对照)和 174 个差异表达蛋白(OE 与健康对照),在大脑中动脉闭塞小鼠皮质中鉴定出 5121 个差异表达基因(第 3 天)和 5906 个差异表达基因(第 7 天)。在小鼠和人类的缺血损伤中,炎症衍生生物标志物 TIMP1(基质金属蛋白酶抑制剂 1)和半乳糖苷结合蛋白 LGLAS3(半乳糖凝集素 3)表现出明显增加。TIMP1 和 LGALS3 与临床指标(血红蛋白、低密度脂蛋白胆固醇和尿酸)相结合,形成一种区分功能结局的综合模型,具有较高的准确性(曲线下面积为 0.8)。

结论

联合模型是评估预后结果的有价值工具,预测因素可以促进更好的治疗策略的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41b7/11964079/7132bbb6bb46/JAH3-13-e035609-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验