Lin Hengyi, Weng Enhuai, Rong Xin, Yu Li, Chen Yiling, Jiang Yukun, Hu Haikun, Wang Zhenming, Zou Shujuan, Hu Zhiai
State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40555-40569. doi: 10.1021/acsami.4c06286. Epub 2024 Jul 23.
Regenerating periodontal defects in osteoporosis patients presents a significant clinical challenge. Unlike the relatively straightforward regeneration of homogeneous bone tissue, periodontal regeneration requires the intricate reconstruction of the cementum-periodontal ligament-alveolar bone interface. Strontium (Sr)-doped biomaterials have been extensively utilized in bone tissue engineering due to their remarkable pro-osteogenic attributes. However, their application in periodontal tissue regeneration has been scarcely explored. In this study, we synthesized an innovative injectable Sr-BGN/GNM scaffold by integrating Sr-doped bioactive glass nanospheres (Sr-BGNs) into the nanofiber architecture of gelatin nanofiber microspheres (GNMs). This design, mimicking the natural bone extracellular matrix (ECM), enhanced the scaffold's mechanical properties and effectively controlled the sustained release of Sr ions (Sr), thereby promoting the proliferation, osteogenic differentiation, and ECM secretion of PDLSCs and BMSCs, as well as enhancing vascularization in endothelial cells. In vivo experiments further indicated that the Sr-BGNs/GNMs significantly promoted osteogenesis and angiogenesis. Moreover, the scaffold's tunable degradation kinetics optimized the prolonged release and pro-regenerative effects of Sr in vivo, matching the pace of periodontal regeneration and thereby facilitating the regeneration of functional periodontal tissues under osteoporotic conditions. Therefore, Sr-BGNs/GNMs emerge as a promising candidate for advancing periodontal regeneration strategies.
在骨质疏松症患者中再生牙周缺损是一项重大的临床挑战。与相对简单的同质骨组织再生不同,牙周再生需要复杂地重建牙骨质 - 牙周韧带 - 牙槽骨界面。掺锶(Sr)生物材料因其显著的促骨生成特性已被广泛应用于骨组织工程。然而,它们在牙周组织再生中的应用却鲜有探索。在本研究中,我们通过将掺锶生物活性玻璃纳米球(Sr - BGNs)整合到明胶纳米纤维微球(GNMs)的纳米纤维结构中,合成了一种创新的可注射Sr - BGN/GNM支架。这种设计模仿天然骨细胞外基质(ECM),增强了支架的机械性能,并有效控制了Sr离子(Sr)的持续释放,从而促进了牙周膜干细胞(PDLSCs)和骨髓间充质干细胞(BMSCs)的增殖、成骨分化和ECM分泌,以及增强了内皮细胞的血管生成。体内实验进一步表明,Sr - BGNs/GNMs显著促进了成骨和血管生成。此外,支架可调节的降解动力学优化了Sr在体内的缓释和促再生作用,与牙周再生的速度相匹配,从而促进了骨质疏松条件下功能性牙周组织的再生。因此,Sr - BGNs/GNMs成为推进牙周再生策略的一个有前途的候选材料。