College of Big Data and Software Engineering, Zhejiang Wanli University, 315200, Ningbo, China.
Faculty of Information Science and Engineering, Ocean University of China, 266005, Qingdao, China.
Water Res. 2024 Sep 15;262:122085. doi: 10.1016/j.watres.2024.122085. Epub 2024 Jul 15.
Sustainable urban water management is crucial for meeting the growing demands of urban populations. This study presents a novel approach that combines time series clustering, seasonal analysis, and entropy analysis to uncover residential water consumption patterns and their drivers. Using a three-year dataset from the SmartH2o project, encompassing 374 households, we identify nine distinct water consumption patterns through time series clustering, leveraging Dynamic Time Warping (DTW) as the optimal similarity measure. Multiple linear regression reveals key household characteristics influencing water usage behaviors, such as the number of bathrooms and appliance efficiency ratings. Seasonal analysis uncovers temporal dynamics, highlighting shifts towards lower consumption during summer months and increased variability in transitional seasons. Entropy analysis quantifies the diversity and complexity of water consumption at both cluster and household levels, informing targeted interventions. This comprehensive, granular approach enables the development of personalized water conservation strategies and policies, empowering water utilities to optimize resource management and contribute to sustainable urban water practices.
可持续城市水资源管理对于满足城市人口不断增长的需求至关重要。本研究提出了一种新方法,将时间序列聚类、季节性分析和熵分析相结合,以揭示居民用水模式及其驱动因素。我们使用来自 SmartH2o 项目的三年数据集(涵盖 374 户家庭),通过时间序列聚类,利用动态时间规整(DTW)作为最佳相似性度量,确定了九种不同的用水模式。多元线性回归揭示了影响用水行为的关键家庭特征,例如浴室数量和器具效率等级。季节性分析揭示了时间动态,突出了夏季用水量下降和过渡季节变异性增加的趋势。熵分析量化了集群和家庭层面用水的多样性和复杂性,为有针对性的干预措施提供了信息。这种全面、细致的方法可以制定个性化的节约用水策略和政策,使水务公司能够优化资源管理,为可持续城市水资源实践做出贡献。