Suppr超能文献

使用卷积神经网络-门控循环单元混合密度网络分析卢瑟福背散射光谱。

Analysis of Rutherford backscattering spectra with CNN-GRU mixture density network.

作者信息

Muzakka Khoirul Faiq, Möller Sören, Kesselheim Stefan, Ebert Jan, Bazarova Alina, Hoffmann Helene, Starke Sebastian, Finsterbusch Martin

机构信息

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.

出版信息

Sci Rep. 2024 Jul 23;14(1):16983. doi: 10.1038/s41598-024-67629-y.

Abstract

Ion Beam Analysis (IBA) utilizing MeV ion beams provides valuable insights into surface elemental composition across the entire periodic table. While ion beam measurements have advanced towards high throughput for mapping applications, data analysis has lagged behind due to the challenges posed by large volumes of data and multiple detectors providing diverse analytical information. Traditional physics-based fitting algorithms for these spectra can be time-consuming and prone to local minima traps, often taking days or weeks to complete. This study presents an approach employing a Mixture Density Network (MDN) to model the posterior distribution of Elemental Depth Profiles (EDP) from input spectra. Our MDN architecture includes an encoder module (EM), leveraging a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU), and a Mixture Density Head (MDH) employing a Multi-Layer Perceptron (MLP). Validation across three datasets with varying complexities demonstrates that for simple and intermediate cases, the MDN performs comparably to the conventional automatic fitting method (Autofit). However, for more complex datasets, Autofit still outperforms the MDN. Additionally, our integrated approach, combining MDN with the automatic fit method, significantly enhances accuracy while still reducing computational time, offering a promising avenue for improved analysis in IBA.

摘要

利用兆电子伏特离子束的离子束分析(IBA)能为整个元素周期表的表面元素组成提供有价值的见解。虽然离子束测量在用于绘图应用的高通量方面取得了进展,但由于大量数据以及多个探测器提供多种分析信息所带来的挑战,数据分析仍滞后。针对这些光谱的传统基于物理的拟合算法可能耗时且容易陷入局部极小值陷阱,通常需要数天或数周才能完成。本研究提出了一种采用混合密度网络(MDN)来对输入光谱的元素深度分布(EDP)的后验分布进行建模的方法。我们的MDN架构包括一个编码器模块(EM),它利用卷积神经网络门控循环单元(CNN - GRU),以及一个采用多层感知器(MLP)的混合密度头(MDH)。在三个具有不同复杂度的数据集上进行的验证表明,对于简单和中等情况,MDN的性能与传统自动拟合方法(Autofit)相当。然而,对于更复杂的数据集,Autofit仍然优于MDN。此外,我们将MDN与自动拟合方法相结合的综合方法在显著提高准确性的同时仍减少了计算时间,为改进IBA分析提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6793/11266510/eb8b04beda72/41598_2024_67629_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验