Suppr超能文献

采用基于变分量子电路的混合量子-经典方法设计微塑料结合肽。

Designing microplastic-binding peptides with a variational quantum circuit-based hybrid quantum-classical approach.

作者信息

Vendrell Raul Conchello, Ajagekar Akshay, Bergman Michael T, Hall Carol K, You Fengqi

机构信息

Institute for Theoretical Physics, ETH Zurich, Zurich 8093, Switzerland.

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Sci Adv. 2024 Dec 20;10(51):eadq8492. doi: 10.1126/sciadv.adq8492. Epub 2024 Dec 18.

Abstract

De novo peptide design exhibits great potential in materials engineering, particularly for the use of plastic-binding peptides to help remediate microplastic pollution. There are no known peptide binders for many plastics-a gap that can be filled with de novo design. Current computational methods for peptide design exhibit limitations in sampling and scaling that could be addressed with quantum computing. Hybrid quantum-classical methods can leverage complementary strengths of near-term quantum algorithms and classical techniques for complex tasks like peptide design. This work introduces a hybrid quantum-classical generative framework for designing plastic-binding peptides combining variational quantum circuits with a variational autoencoder network. We demonstrate the framework's effectiveness in generating peptide candidates, evaluate its efficiency for property-oriented design, and validate the candidates with molecular dynamics simulations. This quantum computing-based approach could accelerate the development of biomolecular tools for environmental and biomedical applications while advancing the study of biomolecular systems through quantum technologies.

摘要

从头肽设计在材料工程中具有巨大潜力,特别是在使用塑料结合肽来帮助修复微塑料污染方面。许多塑料目前尚无已知的肽结合剂——这一空白可通过从头设计来填补。当前用于肽设计的计算方法在采样和规模扩展方面存在局限性,而量子计算可以解决这些问题。混合量子-经典方法可以利用近期量子算法和经典技术的互补优势来处理诸如肽设计等复杂任务。这项工作引入了一种混合量子-经典生成框架,用于设计结合塑料的肽,该框架将变分量子电路与变分自编码器网络相结合。我们展示了该框架在生成肽候选物方面的有效性,评估了其面向属性设计的效率,并通过分子动力学模拟验证了这些候选物。这种基于量子计算的方法可以加速用于环境和生物医学应用的生物分子工具的开发,同时通过量子技术推进对生物分子系统的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd3/11654670/1ed61ce95504/sciadv.adq8492-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验