Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2567, Australia.
NSW Department of Primary Industries, Menangle, NSW, 2568, Australia.
Sci Rep. 2024 Jul 23;14(1):16927. doi: 10.1038/s41598-024-68094-3.
Precision in grazing management is highly dependent on accurate pasture monitoring. Typically, this is often overlooked because existing approaches are labour-intensive, need calibration, and are commonly perceived as inaccurate. Machine-learning processes harnessing big data, including remote sensing, can offer a new era of decision-support tools (DST) for pasture monitoring. Its application on-farm remains poor because of a lack of evidence about its accuracy. This study aimed at evaluating and quantifying the minimum data required to train a machine-learning satellite-based DST focusing on accurate pasture biomass prediction using this approach. Management data from 14 farms in New South Wales, Australia and measured pasture biomass throughout 12 consecutive months using a calibrated rising plate meter (RPM) as well as pasture biomass estimated using a DST based on high temporal/spatial resolution satellite images were available. Data were balanced according to farm and week of each month and randomly allocated for model evaluation (20%) and for progressive training (80%) as follows: 25% training subset (1W: week 1 in each month); 50% (2W: week 1 and 3); 75% (3W: week 1, 3, and 4); and 100% (4W: week 1 to 4). Pasture biomass estimates using the DST across all training datasets were evaluated against a calibrated rising plate meter (RPM) using mean-absolute error (MAE, kg DM/ha) among other statistics. Tukey's HSD test was used to determine the differences between MAE across all training datasets. Relative to the control (no training, MAE: 498 kg DM ha) 1W did not improve the prediction accuracy of the DST (P > 0.05). With the 2W training dataset, the MAE decreased to 342 kg DM ha (P < 0.001), while for the other training datasets, MAE decreased marginally (P > 0.05). This study accounts for minimal training data for a machine-learning DST to monitor pastures from satellites with comparable accuracy to a calibrated RPM which is considered the 'gold standard' for pasture biomass monitoring.
精准放牧管理高度依赖于精确的牧场监测。通常,这一点往往被忽视,因为现有的方法需要大量的人工、需要校准,并且通常被认为不够准确。利用大数据的机器学习流程,包括遥感技术,可以为牧场监测提供一个新的决策支持工具(DST)时代。然而,由于缺乏关于其准确性的证据,其在农场的应用仍然很差。本研究旨在评估和量化训练基于机器学习的卫星 DST 所需的最小数据,该 DST 专注于使用该方法准确预测牧场生物量。澳大利亚新南威尔士州 14 个农场的管理数据以及使用校准的升板仪(RPM)在 12 个月内连续测量的牧场生物量,以及使用基于高时间/空间分辨率卫星图像的 DST 估计的牧场生物量均可用。根据每个月的农场和周对数据进行平衡,并随机分配用于模型评估(20%)和逐步训练(80%),具体如下:25%的训练子集(1W:每月的第 1 周);50%(2W:第 1 周和第 3 周);75%(3W:第 1、3 和 4 周);100%(4W:第 1 周至第 4 周)。使用 DST 跨所有训练数据集进行的牧场生物量估计值与校准的升板仪(RPM)进行了比较,使用平均绝对误差(MAE,kg DM/ha)和其他统计数据进行了评估。使用 Tukey 的 HSD 检验确定了所有训练数据集之间 MAE 的差异。与对照(无训练,MAE:498 kg DM/ha)相比,1W 并没有提高 DST 的预测精度(P>0.05)。使用 2W 训练数据集,MAE 降低到 342 kg DM/ha(P<0.001),而对于其他训练数据集,MAE 略有降低(P>0.05)。本研究考虑了训练机器学习 DST 所需的最小数据量,以从卫星监测牧场,其准确性可与被认为是牧场生物量监测“金标准”的校准 RPM 相媲美。