Suppr超能文献

通过整合单细胞RNA测序和批量RNA测序来表征胃癌的分子特征并建立预后特征。

Characterize molecular signatures and establish a prognostic signature of gastric cancer by integrating single-cell RNA sequencing and bulk RNA sequencing.

作者信息

Wang Zhiwei, Weng Zhiyan, Lin Luping, Wu Xianyi, Liu Wenju, Zhuang Yong, Jian Jinliang, Zhuo Changhua

机构信息

Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China.

Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.

出版信息

Discov Oncol. 2024 Jul 24;15(1):301. doi: 10.1007/s12672-024-01168-w.

Abstract

Gastric cancer is a significant global health concern with complex molecular underpinnings influencing disease progression and patient outcomes. Various molecular drivers were reported, and these studies offered potential avenues for targeted therapies, biomarker discovery, and the development of precision medicine strategies. However, it was posed that the heterogeneity of the disease and the complexity of the molecular interactions are still challenging. By seamlessly integrating data from single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq), we embarked on characterizing molecular signatures and establishing a prognostic signature for this complex malignancy. We offered a holistic view of gene expression landscapes in gastric cancer, identified 226 candidate marker genes from 3 different dimensions, and unraveled key players' risk stratification and treatment decision-making. The convergence of molecular insights in gastric cancer progression occurs at multiple biological scales simultaneously. The focal point of this study lies in developing a prognostic model, and we amalgamated four molecular signatures (COL4A1, FKBP10, RNASE1, SNCG) and three clinical parameters using advanced machine-learning techniques. The model showed high predictive accuracy, with the potential to revolutionize patient care by using clinical variables. This will strengthen the reliability of the model and enable personalized therapeutic strategies based on each patient's unique molecular profile. In summary, our research sheds light on the molecular underpinnings of gastric cancer, culminating in a powerful prognostic tool for gastric cancer. With a firm foundation in biological insights and clinical implications, our study paves the way for future validations and underscores the potential of integrated molecular analysis in advancing precision oncology.

摘要

胃癌是一个重大的全球健康问题,其复杂的分子基础影响着疾病进展和患者预后。已有多种分子驱动因素被报道,这些研究为靶向治疗、生物标志物发现以及精准医学策略的制定提供了潜在途径。然而,该疾病的异质性和分子相互作用的复杂性仍然是挑战。通过无缝整合单细胞RNA测序(scRNA-seq)和批量RNA测序(bulk RNA-seq)的数据,我们着手表征分子特征并为这种复杂的恶性肿瘤建立预后特征。我们提供了胃癌基因表达图谱的整体视图,从3个不同维度鉴定出226个候选标记基因,并揭示了关键因素在风险分层和治疗决策中的作用。胃癌进展中分子见解的融合同时发生在多个生物学尺度上。本研究的重点在于开发一种预后模型,我们使用先进的机器学习技术将四个分子特征(COL4A1、FKBP10、RNASE1、SNCG)和三个临床参数进行了整合。该模型显示出高预测准确性,通过使用临床变量有可能彻底改变患者护理方式。这将增强模型的可靠性,并基于每个患者独特的分子特征制定个性化治疗策略。总之,我们的研究揭示了胃癌的分子基础,最终形成了一种强大的胃癌预后工具。基于生物学见解和临床意义的坚实基础,我们的研究为未来的验证铺平了道路,并强调了整合分子分析在推进精准肿瘤学方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa72/11266334/a434c7d643b3/12672_2024_1168_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验