Suppr超能文献

[跨域YOLOv5:一种基于YOLOv5的先验变压器网络模型,用于自动检测宫颈细胞学图像中的异常细胞或细胞团块]

[Trans-YOLOv5: a YOLOv5-based prior transformer network model for automated detection of abnormal cells or clumps in cervical cytology images].

作者信息

Hu Wenran, Fu Rong

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2024 Jul 20;44(7):1217-1226. doi: 10.12122/j.issn.1673-4254.2024.07.01.

Abstract

The development of various models for automated images screening has significantly enhanced the efficiency and accuracy of cervical cytology image analysis. Single-stage target detection models are capable of fast detection of abnormalities in cervical cytology, but an accurate diagnosis of abnormal cells not only relies on identification of a single cell itself, but also involves the comparison with the surrounding cells. Herein we present the Trans-YOLOv5 model, an automated abnormal cell detection model based on the YOLOv5 model incorporating the global-local attention mechanism to allow efficient multiclassification detection of abnormal cells in cervical cytology images. The experimental results using a large cervical cytology image dataset demonstrated the efficiency and accuracy of this model in comparison with the state-of-the-art methods, with a mAP reaching 65.9% and an AR reaching 53.3%, showing a great potential of this model in automated cervical cancer screening based on cervical cytology images.

摘要

各种用于自动图像筛查的模型的发展显著提高了宫颈细胞学图像分析的效率和准确性。单阶段目标检测模型能够快速检测宫颈细胞学中的异常情况,但对异常细胞的准确诊断不仅依赖于单个细胞本身的识别,还涉及与周围细胞的比较。在此,我们提出了Trans-YOLOv5模型,这是一种基于YOLOv5模型的自动异常细胞检测模型,它结合了全局-局部注意力机制,能够在宫颈细胞学图像中高效地进行多类别异常细胞检测。使用大型宫颈细胞学图像数据集的实验结果表明,与现有方法相比,该模型具有效率和准确性,平均精度均值(mAP)达到65.9%,平均召回率(AR)达到53.3%,显示出该模型在基于宫颈细胞学图像的自动宫颈癌筛查中具有巨大潜力。

相似文献

本文引用的文献

2
Exploring Contextual Relationships for Cervical Abnormal Cell Detection.探索宫颈异常细胞检测的上下文关系。
IEEE J Biomed Health Inform. 2023 Aug;27(8):4086-4097. doi: 10.1109/JBHI.2023.3276919. Epub 2023 Aug 7.
5
Global context-aware cervical cell detection with soft scale anchor matching.基于软尺度锚点匹配的全局上下文感知宫颈细胞检测
Comput Methods Programs Biomed. 2021 Jun;204:106061. doi: 10.1016/j.cmpb.2021.106061. Epub 2021 Mar 26.
7
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.DeepPap:用于宫颈细胞分类的深度卷积神经网络。
IEEE J Biomed Health Inform. 2017 Nov;21(6):1633-1643. doi: 10.1109/JBHI.2017.2705583. Epub 2017 May 19.
8
Automated classification of Pap smear images to detect cervical dysplasia.自动化巴氏涂片图像分类以检测宫颈发育不良。
Comput Methods Programs Biomed. 2017 Jan;138:31-47. doi: 10.1016/j.cmpb.2016.10.001. Epub 2016 Oct 19.
9
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
10
Automatic cervical cell segmentation and classification in Pap smears.巴氏涂片自动宫颈细胞分割与分类。
Comput Methods Programs Biomed. 2014 Feb;113(2):539-56. doi: 10.1016/j.cmpb.2013.12.012. Epub 2014 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验