Enrique-Romero Joan, Lamberts Thanja
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands.
J Phys Chem Lett. 2024 Aug 1;15(30):7799-7805. doi: 10.1021/acs.jpclett.4c01537. Epub 2024 Jul 25.
Aiming to constrain the surface formation of HCN and HNC in the dense interstellar medium on ice-covered dust grains, we investigate the interaction of CN radicals with HO and CO ices and their subsequent reactivity with H and H. CN radicals can physisorb on both ices. However, on HO ice, a hemibond formation is the most common binding mode, while on CO ice, the CN-CO van der Waals complex can form NCCO with a small energy barrier. We show low barrier or barrierless pathways to the formation of HCN and HNC for the reaction H + CN on both ices. Reactivity with H involves activation energy barriers to form HCN, which may be overcome by quantum tunneling, while HNC formation is unlikely. The formation of HCN and HNC competes with the formation of NHCHO on HO and HCOCN on CO.
为了限制在覆冰尘埃颗粒上的致密星际介质中HCN和HNC的表面形成,我们研究了CN自由基与HO冰和CO冰的相互作用以及它们随后与H和H的反应活性。CN自由基可以物理吸附在两种冰上。然而,在HO冰上,半键形成是最常见的结合模式,而在CO冰上,CN-CO范德华复合物可以以较小的能垒形成NCCO。我们展示了在两种冰上H + CN反应形成HCN和HNC的低能垒或无垒途径。与H的反应活性涉及形成HCN的活化能垒,这可能通过量子隧穿来克服,而HNC的形成不太可能。HCN和HNC的形成与HO上NHCHO和CO上HCOCN的形成相互竞争。