Suppr超能文献

简化加拿大议会数据访问:一个用户友好的 R 包。

Streamlining Canadian parliamentary data access: A user-friendly R package.

机构信息

École Nationale D'administration Publique (ÉNAP), Quebec City, Quebec, Canada.

出版信息

PLoS One. 2024 Jul 25;19(7):e0302457. doi: 10.1371/journal.pone.0302457. eCollection 2024.

Abstract

This paper focuses on the methodological and empirical challenges researchers encounter when accessing government open data through the case study of Canada's Open Government Action Plan, with a specific emphasis on datasets hosted by the House of Commons. To address these challenges, we have created an R package designed to streamline the retrieval process of datasets, that are not-so-user-friendly, from the House of Commons website. Furthermore, we have made complete datasets available in both French and English, which are the official languages of Canada, and in multiple formats to improve accessibility. Our package aims to be an invaluable resource for researchers interested in Canadian politics or conducting comparative research. Therefore, a portion of this paper is allocated to showcase the potential utility of our package. Through our research, we highlighted three crucial lessons: firstly, the heterogeneous nature of datasets requires flexibility and adaptability; secondly, open data curators encounter various challenges in addressing user-reported issues; and thirdly, there is a nuanced understanding of "openness" in government datasets. In conclusion, we reflect on the potential scalability of open data initiatives while advocating for a nuanced approach that considers the complex challenges associated with open data accessibility.

摘要

本文通过对加拿大开放政府行动计划的案例研究,聚焦于研究人员在通过政府公开数据获取时所面临的方法论和实证挑战,特别关注下议院所托管的数据集。为了解决这些挑战,我们创建了一个 R 包,旨在简化从下议院网站获取数据集的过程,这些数据集并不那么用户友好。此外,我们提供了完整的数据集,它们分别以加拿大的官方语言——法语和英语呈现,并以多种格式提供,以提高可访问性。我们的包旨在成为对加拿大政治或进行比较研究感兴趣的研究人员的宝贵资源。因此,本文的一部分专门用于展示我们包的潜在效用。通过我们的研究,我们强调了三个关键教训:首先,数据集的异构性需要灵活性和适应性;其次,开放数据管理者在解决用户报告的问题时面临各种挑战;最后,政府数据集的“开放性”需要有细微的理解。总之,我们反思了开放数据计划的潜在可扩展性,同时倡导采取一种细致入微的方法,考虑与开放数据可访问性相关的复杂挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d5/11271861/f10bad330014/pone.0302457.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验