Ausra Jokubas, Madrid Micah, Yin Rose T, Hanna Jessica, Arnott Suzanne, Brennan Jaclyn A, Peralta Roberto, Clausen David, Bakall Jakob A, Efimov Igor R, Gutruf Philipp
Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.
Sci Adv. 2022 Oct 28;8(43):eabq7469. doi: 10.1126/sciadv.abq7469. Epub 2022 Oct 26.
Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.
心脏功能的监测与控制对于心血管病理生理学研究及开发挽救生命的疗法至关重要。然而,目前在具有多种基因型和表型的自由活动的小动物受试者中进行慢性心脏刺激存在困难。具体而言,目前无法实现具有高空间和时间分辨率的心脏功能实时控制。在此,我们介绍一种无线无电池设备,其具有板载计算功能,可通过多部位刺激实现对整个啮齿动物心脏的光遗传学调制,从而进行实时心脏控制。通过机器学习引导设计超薄阵列,可实现生物接口与心脏的无缝集成。在自由活动的动物中展示了长期起搏、记录和板载计算功能。这类设备能够建立新的心力衰竭模型,并通过提供在受试者整个生命周期内持续控制心脏功能的手段,为在慢性时间尺度上测试实时治疗范例提供了一个平台。