Suppr超能文献

天然双烯加成酶完整反应循环的描绘。

Delineation of the complete reaction cycle of a natural Diels-Alderase.

作者信息

Maschio Laurence, Back Catherine R, Alnawah Jawaher, Bowen James I, Johns Samuel T, Mbatha Sbusisiwe Z, Han Li-Chen, Lees Nicholas R, Zorn Katja, Stach James E M, Hayes Martin A, van der Kamp Marc W, Pudney Christopher R, Burston Steven G, Willis Christine L, Race Paul R

机构信息

School of Biochemistry, University Walk, University of Bristol BS8 1TD UK.

School of Chemistry, University of Bristol Cantock's Close BS8 1TS UK

出版信息

Chem Sci. 2024 Jun 24;15(29):11572-11583. doi: 10.1039/d4sc02908a. eCollection 2024 Jul 24.

Abstract

The Diels-Alder reaction is one of the most effective methods for the synthesis of substituted cyclohexenes. The development of protein catalysts for this reaction remains a major priority, affording new sustainable routes to high value target molecules. Whilst a small number of natural enzymes have been shown capable of catalysing [4 + 2] cycloadditions, there is a need for significant mechanistic understanding of how these prospective Diels-Alderases promote catalysis to underpin their development as biocatalysts for use in synthesis. Here we present a molecular description of the complete reaction cycle of the natural Diels-Alderase AbyU, which catalyses formation of the spirotetronate skeleton of the antibiotic abyssomicin C. This description is derived from X-ray crystallographic studies of AbyU in complex with a non-transformable synthetic substrate analogue, together with transient kinetic analyses of the AbyU catalysed reaction and computational reaction simulations. These studies reveal the mechanistic intricacies of this enzyme system and establish a foundation for the informed reengineering of AbyU and related biocatalysts.

摘要

狄尔斯-阿尔德反应是合成取代环己烯最有效的方法之一。开发用于该反应的蛋白质催化剂仍然是一个主要优先事项,为高价值目标分子提供了新的可持续合成路线。虽然已证明少数天然酶能够催化[4 + 2]环加成反应,但需要深入了解这些潜在的狄尔斯-阿尔德酶如何促进催化作用,以支持其作为合成中使用的生物催化剂的开发。在此,我们对天然狄尔斯-阿尔德酶AbyU的完整反应循环进行了分子描述,该酶催化抗生素阿比西尼亚霉素C的螺四内酯骨架的形成。这一描述源自对AbyU与不可转化的合成底物类似物复合物的X射线晶体学研究,以及对AbyU催化反应的瞬态动力学分析和计算反应模拟。这些研究揭示了该酶系统的机制复杂性,并为AbyU及相关生物催化剂的合理改造奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afb9/11268479/75a5e26399fc/d4sc02908a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验