Suppr超能文献

人机交互中的性别效应:一项神经生理学研究。

Gender effect in human-machine communication: a neurophysiological study.

作者信息

Ding Yi, Guo Ran, Lyu Wei, Zhang Wengang

机构信息

School of Economics and Management, Anhui Polytechnic University, Wuhu, China.

出版信息

Front Hum Neurosci. 2024 Jul 10;18:1376221. doi: 10.3389/fnhum.2024.1376221. eCollection 2024.

Abstract

PURPOSE

This study aimed to investigate the neural mechanism by which virtual chatbots' gender might influence users' usage intention and gender differences in human-machine communication.

APPROACH

Event-related potentials (ERPs) and subjective questionnaire methods were used to explore the usage intention of virtual chatbots, and statistical analysis was conducted through repeated measures ANOVA.

RESULTS/FINDINGS: The findings of ERPs revealed that female virtual chatbots, compared to male virtual chatbots, evoked a larger amplitude of P100 and P200, implying a greater allocation of attentional resources toward female virtual chatbots. Considering participants' gender, the gender factors of virtual chatbots continued to influence N100, P100, and P200. Specifically, among female participants, female virtual chatbots induced a larger P100 and P200 amplitude than male virtual chatbots, indicating that female participants exhibited more attentional resources and positive emotions toward same-gender chatbots. Conversely, among male participants, male virtual chatbots induced a larger N100 amplitude than female virtual chatbots, indicating that male participants allocated more attentional resources toward male virtual chatbots. The results of the subjective questionnaire showed that regardless of participants' gender, users have a larger usage intention toward female virtual chatbots than male virtual chatbots.

VALUE

Our findings could provide designers with neurophysiological insights into designing better virtual chatbots that cater to users' psychological needs.

摘要

目的

本研究旨在探究虚拟聊天机器人的性别可能影响用户使用意愿的神经机制以及人机交流中的性别差异。

方法

采用事件相关电位(ERP)和主观问卷方法来探究虚拟聊天机器人的使用意愿,并通过重复测量方差分析进行统计分析。

结果/发现:ERP的结果显示,与男性虚拟聊天机器人相比,女性虚拟聊天机器人诱发的P100和P200波幅更大,这意味着对女性虚拟聊天机器人分配了更多的注意力资源。考虑到参与者的性别,虚拟聊天机器人的性别因素继续影响N100、P100和P200。具体而言,在女性参与者中,女性虚拟聊天机器人诱发的P100和P200波幅比男性虚拟聊天机器人更大,这表明女性参与者对同性聊天机器人表现出更多的注意力资源和积极情绪。相反,在男性参与者中,男性虚拟聊天机器人诱发的N100波幅比女性虚拟聊天机器人更大,这表明男性参与者对男性虚拟聊天机器人分配了更多的注意力资源。主观问卷的结果表明,无论参与者的性别如何,用户对女性虚拟聊天机器人的使用意愿都比对男性虚拟聊天机器人更大。

价值

我们的研究结果可以为设计师提供神经生理学方面的见解,以设计出更能满足用户心理需求的虚拟聊天机器人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验