Du Qiliang, Sheng Mingde, Yu Lubin, Zhou Zhenwei, Tian Lianfang, He Shilie
School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.
Guangdong Engineering Research Center of Cloud-Edge-End Collaboration Technology for Smart City, Guangzhou 510641, China.
Entropy (Basel). 2024 Jun 27;26(7):550. doi: 10.3390/e26070550.
Since the reliability of the avionics module is crucial for aircraft safety, the fault diagnosis and health management of this module are particularly significant. While deep learning-based prognostics and health management (PHM) methods exhibit highly accurate fault diagnosis, they have disadvantages such as inefficient data feature extraction and insufficient generalization capability, as well as a lack of avionics module fault data. Consequently, this study first employs fault injection to simulate various fault types of the avionics module and performs data enhancement to construct the P2020 communications processor fault dataset. Subsequently, a multichannel fault diagnosis method, the Hybrid Attention Adaptive Multi-scale Temporal Convolution Network (HAAMTCN) for the integrated functional circuit module of the avionics module, is proposed, which adaptively constructs the optimal size of the convolutional kernel to efficiently extract features of avionics module fault signals with large information entropy. Further, the combined use of the Interaction Channel Attention (ICA) module and the Hierarchical Block Temporal Attention (HBTA) module results in the HAAMTCN to pay more attention to the critical information in the channel dimension and time step dimension. The experimental results show that the HAAMTCN achieves an accuracy of 99.64% in the avionics module fault classification task which proves our method achieves better performance in comparison with existing methods.
由于航空电子模块的可靠性对飞机安全至关重要,因此该模块的故障诊断和健康管理尤为重要。虽然基于深度学习的预测与健康管理(PHM)方法在故障诊断方面具有高度准确性,但它们存在数据特征提取效率低、泛化能力不足以及缺乏航空电子模块故障数据等缺点。因此,本研究首先采用故障注入来模拟航空电子模块的各种故障类型,并进行数据增强以构建P2020通信处理器故障数据集。随后,提出了一种用于航空电子模块集成功能电路模块的多通道故障诊断方法,即混合注意力自适应多尺度时间卷积网络(HAAMTCN),该方法自适应地构建卷积核的最佳大小,以有效提取具有大信息熵的航空电子模块故障信号特征。此外,交互通道注意力(ICA)模块和分层块时间注意力(HBTA)模块的联合使用,使得HAAMTCN能够更加关注通道维度和时间步长维度中的关键信息。实验结果表明,HAAMTCN在航空电子模块故障分类任务中达到了99.64%的准确率,这证明我们的方法与现有方法相比具有更好的性能。