Suppr超能文献

基于MSCNN-LSTM-CBAM-SE的变速箱故障诊断

Gearbox Fault Diagnosis Based on MSCNN-LSTM-CBAM-SE.

作者信息

He Chao, Yasenjiang Jarula, Lv Luhui, Xu Lihua, Lan Zhigang

机构信息

College of Intelligent Manufacturing and Industrial Modernization, Xinjiang University, Urumqi 830017, China.

出版信息

Sensors (Basel). 2024 Jul 19;24(14):4682. doi: 10.3390/s24144682.

Abstract

Ensuring the safety of mechanical equipment, gearbox fault diagnosis is crucial for the stable operation of the whole system. However, existing diagnostic methods still have limitations, such as the analysis of single-scale features and insufficient recognition of global temporal dependencies. To address these issues, this article proposes a new method for gearbox fault diagnosis based on MSCNN-LSTM-CBAM-SE. The output of the CBAM-SE module is deeply integrated with the multi-scale features from MSCNN and the temporal features from LSTM, constructing a comprehensive feature representation that provides richer and more precise information for fault diagnosis. The effectiveness of this method has been validated with two sets of gearbox datasets and through ablation studies on this model. Experimental results show that the proposed model achieves excellent performance in terms of accuracy and F1 score, among other metrics. Finally, a comparison with other relevant fault diagnosis methods further verifies the advantages of the proposed model. This research offers a new solution for accurate fault diagnosis of gearboxes.

摘要

确保机械设备的安全,齿轮箱故障诊断对于整个系统的稳定运行至关重要。然而,现有的诊断方法仍然存在局限性,例如单尺度特征分析以及对全局时间依赖性的识别不足。为了解决这些问题,本文提出了一种基于MSCNN-LSTM-CBAM-SE的齿轮箱故障诊断新方法。CBAM-SE模块的输出与来自MSCNN的多尺度特征和来自LSTM的时间特征深度融合,构建了一个综合特征表示,为故障诊断提供了更丰富、更精确的信息。该方法的有效性已通过两组齿轮箱数据集以及对该模型的消融研究得到验证。实验结果表明,所提出的模型在准确率和F1分数等指标方面表现优异。最后,与其他相关故障诊断方法的比较进一步验证了所提出模型的优势。本研究为齿轮箱的准确故障诊断提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76fe/11281271/29bb8f436bed/sensors-24-04682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验