Suppr超能文献

流体剪切应力作用下 在惰性表面上的粘附模拟与建模。 (你提供的原文“Simulation and Modeling of the Adhesion of onto Inert Surfaces under Fluid Shear Stress.”中“of the Adhesion of onto”这里少了个关键主体,不太完整准确,但按照要求翻译如上。)

Simulation and Modeling of the Adhesion of onto Inert Surfaces under Fluid Shear Stress.

作者信息

Shaikh Sarees, Saleem Abdul Nafay, Ymele-Leki Patrick

机构信息

Department of Chemical Engineering, Howard University, Washington, DC 20059, USA.

Department of Electrical Engineering and Computer Science, Howard University, Washington, DC 20059, USA.

出版信息

Pathogens. 2024 Jun 30;13(7):551. doi: 10.3390/pathogens13070551.

Abstract

Bacterial adhesion to biotic and abiotic surfaces under fluid shear stress plays a major role in the pathogenesis of infections linked to medical implants and tissues. This study employed an automated BioFlux 200 microfluidic system and video microscopy to conduct real-time adhesion assays, examining the influence of shear stress on adhesion kinetics and spatial distribution of on glass surfaces. The adhesion rate exhibited a non-linear relationship with shear stress, with notable variations at intermediate levels. Empirical adhesion events were simulated with COMSOL Multiphysics and Python. Overall, COMSOL accurately predicted the experimental trend of higher rates of bacterial adhesion with decreasing shear stress but poorly characterized the plateauing phenomena observed over time. Python provided a robust mathematical representation of the non-linear relationship between cell concentration, shear stress, and time but its polynomial regression approach was not grounded on theoretical physical concepts. These insights, combined with advancements in AI and machine learning, underscore the potential for synergistic computational techniques to enhance our understanding of bacterial adhesion to surfaces, offering a promising avenue for developing novel therapeutic strategies.

摘要

在流体剪切应力作用下,细菌对生物和非生物表面的粘附在与医疗植入物和组织相关的感染发病机制中起着重要作用。本研究采用自动化的BioFlux 200微流体系统和视频显微镜进行实时粘附测定,研究剪切应力对细菌在玻璃表面的粘附动力学和空间分布的影响。粘附率与剪切应力呈非线性关系,在中等水平时存在显著变化。用COMSOL Multiphysics和Python对经验性粘附事件进行了模拟。总体而言,COMSOL准确预测了随着剪切应力降低细菌粘附率升高的实验趋势,但对随时间观察到的平稳现象的表征较差。Python提供了细胞浓度、剪切应力和时间之间非线性关系的强大数学表示,但其多项式回归方法并非基于理论物理概念。这些见解,结合人工智能和机器学习的进展,强调了协同计算技术在增强我们对细菌与表面粘附的理解方面的潜力,为开发新的治疗策略提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/11280353/c6ceffe4c395/pathogens-13-00551-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验