IEEE Trans Med Imaging. 2024 Sep;43(9):3292-3305. doi: 10.1109/TMI.2024.3392988. Epub 2024 Sep 3.
Functional magnetic resonance imaging (fMRI) is a commonly used technique to measure neural activation. Its application has been particularly important in identifying underlying neurodegenerative conditions such as Parkinson's, Alzheimer's, and Autism. Recent analysis of fMRI data models the brain as a graph and extracts features by graph neural networks (GNNs). However, the unique characteristics of fMRI data require a special design of GNN. Tailoring GNN to generate effective and domain-explainable features remains challenging. In this paper, we propose a contrastive dual-attention block and a differentiable graph pooling method called ContrastPool to better utilize GNN for brain networks, meeting fMRI-specific requirements. We apply our method to 5 resting-state fMRI brain network datasets of 3 diseases and demonstrate its superiority over state-of-the-art baselines. Our case study confirms that the patterns extracted by our method match the domain knowledge in neuroscience literature, and disclose direct and interesting insights. Our contributions underscore the potential of ContrastPool for advancing the understanding of brain networks and neurodegenerative conditions. The source code is available at https://github.com/AngusMonroe/ContrastPool.
功能磁共振成像(fMRI)是一种常用的测量神经激活的技术。它在识别帕金森氏症、阿尔茨海默氏症和自闭症等潜在神经退行性疾病方面的应用尤其重要。最近对 fMRI 数据的分析将大脑建模为图,并通过图神经网络(GNN)提取特征。然而,fMRI 数据的独特特征需要对 GNN 进行特殊设计。针对生成有效且可解释领域的特征,对 GNN 进行定制仍然具有挑战性。在本文中,我们提出了一种对比双注意块和一种可微分图池化方法,称为 ContrastPool,以更好地利用 GNN 进行脑网络分析,满足 fMRI 的特定要求。我们将该方法应用于 3 种疾病的 5 个静息态 fMRI 脑网络数据集,并证明其优于最先进的基线方法。我们的案例研究证实,我们的方法提取的模式与神经科学文献中的领域知识相匹配,并揭示了直接而有趣的见解。我们的贡献强调了 ContrastPool 用于推进对脑网络和神经退行性疾病理解的潜力。源代码可在 https://github.com/AngusMonroe/ContrastPool 上获得。