School of Biomedical Engineering, Sun Yat-sen University, 518107, Guangdong, China.
Department of Information Science and Engineering, Shandong Normal University, Shandong, China.
Neuroimage. 2024 Aug 15;297:120750. doi: 10.1016/j.neuroimage.2024.120750. Epub 2024 Jul 24.
Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson's disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.
脑电图 (EEG) 在诊断脑部疾病方面具有重要价值。特别是,脑网络作为一种通过在 EEG 信号通道之间建立连接来提供额外有价值见解的方法,已经变得越来越重要。虽然脑连接通常通过通道信号相似性来描绘,但确定节点特征的方法缺乏一致性和可靠性。传统的节点特征,如 EEG 信号的时域和频域特性,不足以捕获广泛的 EEG 信息。在我们的研究中,我们提出了一种从 EEG 信号中提取节点特征的新自适应方法,该方法使用独特的任务诱导自监督学习技术。通过将这些提取的节点特征与使用 Pearson 相关系数构建的基本边缘特征相结合,我们证明了所提出的方法可以作为一个插件模块,集成到许多常见的 GNN 网络(例如 GCN、GraphSAGE、GAT)中,作为节点特征选择模块的替代。然后进行全面的实验,以证明与其他特征选择方法相比,所提出的方法在各种脑疾病预测任务(如抑郁症、精神分裂症和帕金森病)中具有一致的卓越性能和高度通用性。此外,与其他节点特征相比,我们的方法通过图池化和结构学习揭示了深刻的空间模式,为基于导出特征的各种脑疾病预测提供了关键的脑区影响。