Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
Food Res Int. 2024 Sep;191:114646. doi: 10.1016/j.foodres.2024.114646. Epub 2024 Jun 18.
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
二十二碳六烯酸(DHA)是一种必需的欧米伽-3 脂肪酸,具有显著的健康益处,但面临独特气味、氧化敏感性和有限的肠道通透性等挑战,限制了其广泛应用。微胶囊化技术广泛应用于增强 DHA 的性能,促进其在胃肠道中的控制释放、消化和吸收。尽管对 DHA 微胶囊及其相关传递系统进行了广泛的研究,但对于控制包封 DHA 释放、消化和吸收的机制,特别是关于壁材和 DHA 来源的影响,仍知之甚少。本综述首先概述了目前常用于 DHA 微胶囊化的技术。然后,它概述了 DHA 微胶囊释放、消化和吸收的最新进展,强调了壁材和 DHA 来源的作用。重要的是,它提出了克服挑战和利用机会来提高 DHA 微胶囊生物利用度的策略。值得注意的是,喷雾干燥在 DHA 微胶囊化中占主导地位(超过 90%的应用),而复杂凝聚有望在未来得到应用。作为壁材的蛋白质和碳水化合物或磷脂的组合在控制 DHA 微胶囊的释放和消化方面显示出潜力。DHA 的来源,特别是藻类油,表现出比鱼油更高的脂类消化率和游离脂肪酸(FFAs)吸收率。DHA 微胶囊开发的未来进展包括配方重新设计(例如,使用植物蛋白作为壁材和藻类油作为 DHA 来源)、技术优化(如共微胶囊化和预消化),以及创建用于评估 DHA 消化和吸收动力学的先进体外系统。