Suppr超能文献

使用多组学分析和Opade人工智能预测工具优化和预测重度抑郁症患者的抗抑郁疗效

Optimizing and Predicting Antidepressant Efficacy in Patients with Major Depressive Disorder Using Multi-Omics Analysis and the Opade AI Prediction Tools.

作者信息

Corrivetti Giulio, Monaco Francesco, Vignapiano Annarita, Marenna Alessandra, Palm Kaia, Fernández-Arroyo Salvador, Frigola-Capell Eva, Leen Volker, Ibarrola Oihane, Amil Burak, Caruson Mattia Marco, Chiariotti Lorenzo, Palacios-Ariza Maria Alejandra, Hoekstra Pieter J, Chiang Hsin-Yin, Floareș Alexandru, Fagiolini Andrea, Fasano Alessio

机构信息

Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy.

European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy.

出版信息

Brain Sci. 2024 Jun 28;14(7):658. doi: 10.3390/brainsci14070658.

Abstract

According to the World Health Organization (WHO), major depressive disorder (MDD) is the fourth leading cause of disability worldwide and the second most common disease after cardiovascular events. Approximately 280 million people live with MDD, with incidence varying by age and gender (female to male ratio of approximately 2:1). Although a variety of antidepressants are available for the different forms of MDD, there is still a high degree of individual variability in response and tolerability. Given the complexity and clinical heterogeneity of these disorders, a shift from "canonical treatment" to personalized medicine with improved patient stratification is needed. OPADE is a non-profit study that researches biomarkers in MDD to tailor personalized drug treatments, integrating genetics, epigenetics, microbiome, immune response, and clinical data for analysis. A total of 350 patients between 14 and 50 years will be recruited in 6 Countries (Italy, Colombia, Spain, The Netherlands, Turkey) for 24 months. Real-time electroencephalogram (EEG) and patient cognitive assessment will be correlated with biological sample analysis. A patient empowerment tool will be deployed to ensure patient commitment and to translate patient stories into data. The resulting data will be used to train the artificial intelligence/machine learning (AI/ML) predictive tool.

摘要

根据世界卫生组织(WHO)的数据,重度抑郁症(MDD)是全球致残的第四大主要原因,也是仅次于心血管疾病的第二大常见疾病。约有2.8亿人患有MDD,其发病率因年龄和性别而异(女性与男性的比例约为2:1)。尽管有多种抗抑郁药可用于治疗不同形式的MDD,但在反应和耐受性方面仍存在高度的个体差异。鉴于这些疾病的复杂性和临床异质性,需要从“传统治疗”转向具有更好患者分层的个性化医疗。OPADE是一项非营利性研究,旨在研究MDD中的生物标志物以定制个性化药物治疗,整合遗传学、表观遗传学、微生物组、免疫反应和临床数据进行分析。将在6个国家(意大利、哥伦比亚、西班牙、荷兰、土耳其)招募350名年龄在14至50岁之间的患者,为期24个月。实时脑电图(EEG)和患者认知评估将与生物样本分析相关联。将部署一个患者赋能工具,以确保患者的参与度,并将患者的情况转化为数据。所得数据将用于训练人工智能/机器学习(AI/ML)预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d18c/11275115/8f5fc0194c19/brainsci-14-00658-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验