Zhang Zhi-Yong, Yan Chun-Xia, Min Qiao-Mei, Zhang Yu-Xiang, Jing Wen-Fan, Hou Wen-Xuan, Pan Ke-Yang
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
Bioengineering (Basel). 2024 Jul 2;11(7):674. doi: 10.3390/bioengineering11070674.
Dental age estimation is extensively employed in forensic medicine practice. However, the accuracy of conventional methods fails to satisfy the need for precision, particularly when estimating the age of adults. Herein, we propose an approach for age estimation utilizing orthopantomograms (OPGs). We propose a new dental dataset comprising OPGs of 27,957 individuals (16,383 females and 11,574 males), covering an age range from newborn to 93 years. The age annotations were meticulously verified using ID card details. Considering the distinct nature of dental data, we analyzed various neural network components to accurately estimate age, such as optimal network depth, convolution kernel size, multi-branch architecture, and early layer feature reuse. Building upon the exploration of distinctive characteristics, we further employed the widely recognized method to identify models for dental age prediction. Consequently, we discovered two sets of models: one exhibiting superior performance, and the other being lightweight. The proposed approaches, namely AGENet and AGE-SPOS, demonstrated remarkable superiority and effectiveness in our experimental results. The proposed models, AGENet and AGE-SPOS, showed exceptional effectiveness in our experiments. AGENet outperformed other CNN models significantly by achieving outstanding results. Compared to Inception-v4, with the mean absolute error (MAE) of 1.70 and 20.46 B FLOPs, our AGENet reduced the FLOPs by 2.7×. The lightweight model, AGE-SPOS, achieved an MAE of 1.80 years with only 0.95 B FLOPs, surpassing MobileNetV2 by 0.18 years while utilizing fewer computational operations. In summary, we employed an effective DNN searching method for forensic age estimation, and our methodology and findings hold significant implications for age estimation with oral imaging.
牙齿年龄估计在法医学实践中被广泛应用。然而,传统方法的准确性无法满足精确性的需求,尤其是在估计成年人年龄时。在此,我们提出一种利用全景曲面断层片(OPG)进行年龄估计的方法。我们提出了一个新的牙齿数据集,包含27957个人的OPG(16383名女性和11574名男性),年龄范围从新生儿到93岁。年龄标注通过身份证详细信息进行了精心验证。考虑到牙齿数据的独特性质,我们分析了各种神经网络组件以准确估计年龄,例如最优网络深度、卷积核大小、多分支架构和早期层特征重用。基于对独特特征的探索,我们进一步采用广泛认可的方法来识别用于牙齿年龄预测的模型。因此,我们发现了两组模型:一组表现出卓越性能,另一组则较为轻量级。所提出的方法,即AGENet和AGE - SPOS,在我们的实验结果中表现出显著的优越性和有效性。所提出的模型AGENet和AGE - SPOS在我们的实验中显示出卓越的有效性。AGENet通过取得出色的结果显著优于其他卷积神经网络模型。与Inception - v4相比,AGENet的平均绝对误差(MAE)为1.70,计算量为20.46 B FLOPs,我们的AGENet将计算量减少了2.7倍。轻量级模型AGE - SPOS仅用0.95 B FLOPs就实现了1.80岁的MAE,比MobileNetV2的MAE低0.18岁,同时使用的计算操作更少。总之,我们采用了一种有效的深度神经网络搜索方法用于法医年龄估计,我们的方法和发现对口腔成像年龄估计具有重要意义。