Suppr超能文献

用于自助式智能医疗系统的判别输入处理方案

Discriminant Input Processing Scheme for Self-Assisted Intelligent Healthcare Systems.

作者信息

Medani Mohamed, Alsubai Shtwai, Min Hong, Dutta Ashit Kumar, Anjum Mohd

机构信息

Applied College of Mahail Aseer, King Khalid University, Abha 62529, Saudi Arabia.

Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, P.O. Box 151, Al-Kharj 16278, Saudi Arabia.

出版信息

Bioengineering (Basel). 2024 Jul 14;11(7):715. doi: 10.3390/bioengineering11070715.

Abstract

Modern technology and analysis of emotions play a crucial role in enabling intelligent healthcare systems to provide diagnostics and self-assistance services based on observation. However, precise data predictions and computational models are critical for these systems to perform their jobs effectively. Traditionally, healthcare monitoring has been the primary emphasis. However, there were a couple of negatives, including the pattern feature generating the method's scalability and reliability, which was tested with different data sources. This paper delves into the Discriminant Input Processing Scheme (DIPS), a crucial instrument for resolving challenges. Data-segmentation-based complex processing techniques allow DIPS to merge many emotion analysis streams. The DIPS recommendation engine uses segmented data characteristics to sift through inputs from the emotion stream for patterns. The recommendation is more accurate and flexible since DIPS uses transfer learning to identify similar data across different streams. With transfer learning, this study can be sure that the previous recommendations and data properties will be available in future data streams, making the most of them. Data utilization ratio, approximation, accuracy, and false rate are some of the metrics used to assess the effectiveness of the advised approach. Self-assisted intelligent healthcare systems that use emotion-based analysis and state-of-the-art technology are crucial when managing healthcare. This study improves healthcare management's accuracy and efficiency using computational models like DIPS to guarantee accurate data forecasts and recommendations.

摘要

现代技术和情感分析在使智能医疗系统能够基于观察提供诊断和自助服务方面发挥着关键作用。然而,精确的数据预测和计算模型对于这些系统有效执行其工作至关重要。传统上,医疗监测一直是主要重点。然而,存在一些负面因素,包括模式特征生成方法的可扩展性和可靠性,这在不同数据源上进行了测试。本文深入探讨了判别式输入处理方案(DIPS),这是解决挑战的关键工具。基于数据分割的复杂处理技术使DIPS能够合并多个情感分析流。DIPS推荐引擎使用分割后的数据特征从情感流的输入中筛选模式。由于DIPS使用迁移学习来跨不同流识别相似数据,因此推荐更加准确和灵活。通过迁移学习,本研究可以确保先前的推荐和数据属性将在未来的数据流中可用,并充分利用它们。数据利用率、近似度、准确性和错误率是用于评估建议方法有效性的一些指标。在管理医疗保健时,使用基于情感的分析和先进技术的自助式智能医疗系统至关重要。本研究使用DIPS等计算模型提高医疗管理的准确性和效率,以确保准确的数据预测和推荐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07e0/11274065/0fdb9405d032/bioengineering-11-00715-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验