Suppr超能文献

来自不同实验室的菌株基因组之间的结构差异。

Structural Differences between the Genomes of Strains from Different Laboratories.

机构信息

Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia.

出版信息

Genes (Basel). 2024 Jun 27;15(7):847. doi: 10.3390/genes15070847.

Abstract

The bacterium is known to efficiently and accurately reassemble its genome after hundreds of DNA double-strand breaks (DSBs). Only at very large amounts of radiation-induced DSBs is this accuracy affected in the wild-type , causing rearrangements in its genome structure. However, changes in its genome structure may also be possible during the propagation and storage of cell cultures. We investigate this possibility by listing structural differences between three completely sequenced genomes of strains with a recent common ancestor-the type strain stored and sequenced in two different laboratories (of the ATCC 13939 lineage) and the first sequenced strain historically used as the reference (ATCC BAA-816). We detected a number of structural differences and found the most likely mechanisms behind them: (i) transposition/copy number change in mobile interspersed repeats-insertion sequences and small non-coding repeats, (ii) variable number of monomers within tandem repeats, (iii) deletions between long direct DNA repeats, and (iv) deletions between short (4-10 bp) direct DNA repeats. The most surprising finding was the deletions between short repeats because it indicates the utilization of a less accurate DSB repair mechanism in conditions in which a more accurate one should be both available and preferred. The detected structural differences, as well as SNPs and short indels, while being important footprints of deinococcal DNA metabolism and repair, are also a valuable resource for researchers using these strains.

摘要

该细菌在数百个 DNA 双链断裂(DSB)后,能够有效地、准确地重组其基因组。只有在大量辐射诱导的 DSB 时,这种准确性才会受到野生型的影响,导致其基因组结构发生重排。然而,在细胞培养物的传播和储存过程中,其基因组结构也可能发生变化。我们通过列出具有近期共同祖先的三个完全测序的 菌株之间的结构差异来研究这种可能性-保存在两个不同实验室(ATCC 13939 谱系)并测序的原始菌株以及历史上用作参考的第一个测序菌株(ATCC BAA-816)。我们检测到许多结构差异,并找到了它们背后最可能的机制:(i)转位/移动散布重复-插入序列和小非编码重复的拷贝数变化,(ii)串联重复中单体数量的变化,(iii)长直接 DNA 重复之间的缺失,以及(iv)短(4-10 bp)直接 DNA 重复之间的缺失。最令人惊讶的发现是短重复之间的缺失,因为这表明在应该既有可用又有首选的更准确的 DSB 修复机制的情况下,利用了不太准确的修复机制。所检测到的结构差异,以及 SNPs 和短插入缺失,虽然是脱氮球菌 DNA 代谢和修复的重要足迹,但对于使用这些 菌株的研究人员来说,也是非常有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0b/11276467/62b87402b3c8/genes-15-00847-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验