Desroches M, Royer G, Roche D, Mercier-Darty M, Vallenet D, Médigue C, Bastard K, Rodriguez C, Clermont O, Denamur E, Decousser J-W
Assistance Publique: Hôpitaux de Paris, Hôpital Henri Mondor, Université Paris Est Créteil, Département de Microbiologie, Créteil, France.
UMR1137, Université Paris Diderot, INSERM, IAME, Sorbonne Paris Cité, Paris, France.
mSphere. 2018 Jan 31;3(1). doi: 10.1128/mSphere.00553-17. eCollection 2018 Jan-Feb.
More than a century ago, Theodor Escherich isolated the bacterium that was to become , one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene . These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.
一个多世纪以前,西奥多·埃希里希分离出了一种细菌,这种细菌后来成为了研究最为广泛的生物之一。不久之后,该菌株开始了一段历程,并进入了世界各地的许多实验室。由于实验室培养条件可能导致细菌菌株发生重大变化,我们对来自不同培养物保藏中心(英国、法国、美国、德国)的这种标志性菌株的分离株进行了基因组分析。令人惊讶的是,多位点序列分型(MLST)、毒力相关基因的存在、核心基因组MLST以及单核苷酸多态性/插入缺失分析表明,分离株之间存在许多差异。这些差异与该菌株的系统发育地理历史相关,并且是由于编码DNA修复功能(如错配修复(MutL)和氧化鸟嘌呤核苷酸池清理(MutT))的基因中出现了前所未有的大量突变,赋予了特定的突变谱并导致了突变体表型。这种突变体表型可能是在传代培养过程中获得的,并且对应于二级选择。此外,由于外排泵和孔蛋白编码基因的突变以及编码σ因子的基因中的特定突变,所有分离株对抗生素都表现出超敏感性。这些缺陷反映了一种自我保护和营养能力之间的权衡,使得该菌株能够在储存所带来的饥饿条件下存活。从临床角度来看,处理这种突变菌株可能会导致微生物学家对分离株的相关性得出错误结论,并可能影响治疗效果。突变体表型已在实验室进化的细菌以及自然分离株中被描述。几个基因可能会受到影响,每个基因都与一种典型的突变谱相关。通过研究现存最古老的菌株之一,即埃希氏菌属祖先菌株,我们能够确定其突变体状态,这种状态导致了来自各种保藏中心的分离株之间存在巨大的遗传多样性,并使我们能够重建该菌株的系统发育地理历史。这种突变体表型可能是在菌株储存过程中获得的,促进了对特定环境的适应。编码σ因子、外排泵和孔蛋白的基因中的其他突变突出了该菌株通过自我保护和营养能力调节实现的适应性变化。自1885年以来,这种菌株的历史可以被视为世界各地培养物保藏中心无意的实验进化,类似于伦斯基等人对大肠杆菌的长期实验进化(O. 特纳永、J. E. 巴里克、N. 里贝克、D. E. 迪瑟拉奇、J. L. 布兰查德、A. 达斯古普塔、G. C. 吴、S. 维戈斯、S. 克鲁维耶、C. 梅迪格、D. 施耐德和R. E. 伦斯基,《自然》536:165 - 170, 2016, https://doi.org/10.1038/nature18959),它们具有许多共同的分子特征。