Shao Meiqi, Zhang Wei, Wang Fu, Wang Lan, Du Hong
Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials & Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518057, China.
Materials (Basel). 2024 Jul 15;17(14):3495. doi: 10.3390/ma17143495.
Chemodynamic therapy (CDT) alone cannot achieve sufficient therapeutic effects due to the excessive glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Developing a novel strategy to improve efficiency is urgently needed. Herein, we prepared a copper silicate nanoplatform (CSNP) derived from colloidal silica. The Cu(II) in CSNP can be reduced to Cu(I), which cascades to induce a subsequent CDT process. Additionally, benefiting from GSH depletion and oxygen (O) generation under 660 nm laser irradiation, CSNP exhibits both Fenton-like and hypoxia-alleviating activities, contributing to the effective generation of superoxide anion radical (O) and hydroxyl radical (OH) in the TME. Furthermore, given the suitable band-gap characteristic and excellent photochemical properties, CSNP can also serve as an efficient type-I photosensitizer for photodynamic therapy (PDT). The synergistic CDT/PDT activity of CSNP presents an efficient antitumor effect and biosecurity in both in vitro and in vivo experiments. The development of an all-in-one nanoplatform that integrates Fenton-like and photosensing properties could improve ROS production within tumors. This study highlights the potential of silicate nanomaterials in cancer treatment.
由于肿瘤微环境(TME)中存在过量的谷胱甘肽(GSH)和缺氧情况,单纯的化学动力疗法(CDT)无法实现足够的治疗效果。因此,迫切需要开发一种新的策略来提高其效率。在此,我们制备了一种源自胶体二氧化硅的硅酸铜纳米平台(CSNP)。CSNP中的Cu(II)可还原为Cu(I),进而引发后续的CDT过程。此外,得益于660 nm激光照射下的GSH消耗和氧气(O)生成,CSNP展现出类芬顿和缓解缺氧的活性,有助于在TME中有效生成超氧阴离子自由基(O)和羟基自由基(OH)。此外,鉴于合适的带隙特性和优异的光化学性质,CSNP还可作为光动力疗法(PDT)的高效I型光敏剂。CSNP的协同CDT/PDT活性在体外和体内实验中均呈现出高效的抗肿瘤效果和生物安全性。开发一种集成类芬顿和光传感特性的一体化纳米平台可提高肿瘤内活性氧的产生。这项研究突出了硅酸盐纳米材料在癌症治疗中的潜力。