Suppr超能文献

用于在近红外二区光下进行磁导向和光热治疗的铁还原氧化石墨烯核壳微马达

Iron-Reduced Graphene Oxide Core-Shell Micromotors Designed for Magnetic Guidance and Photothermal Therapy under Second Near-Infrared Light.

作者信息

Donoso-González Orlando, Riveros Ana L, Marco José F, Venegas-Yazigi Diego, Paredes-García Verónica, Olguín Camila F, Mayorga-Lobos Cristina, Lobos-González Lorena, Franco-Campos Felipe, Wang Joseph, Kogan Marcelo J, Bollo Soledad, Yañez Claudia, Báez Daniela F

机构信息

Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.

Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.

出版信息

Pharmaceutics. 2024 Jun 25;16(7):856. doi: 10.3390/pharmaceutics16070856.

Abstract

Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core-shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core-shell micromotors could hold great potential for combined photothermal therapy.

摘要

核壳型微纳马达因其多功能的任务执行能力而在生物医学领域引起了广泛关注。然而,由于其肿瘤蓄积性差、光热转换率低以及近红外(NIR)光穿透有限,它们在光热疗法(PTT)中的有效性仍然面临挑战。在本研究中,我们展示了一种结合了磁性和光热特性的新型核壳型微马达。它是通过在微孔管状膜上采用模板辅助电沉积铁(Fe)和还原氧化石墨烯(rGO)合成的。所得的Fe-rGO微马达由具有大磁化强度的椭圆形零价铁纳米颗粒核心组成。同时,外层具有均匀的还原氧化石墨烯(rGO)形貌。这些Fe-rGO核壳型微马达结合起来,对磁力和近红外(NIR)光(1064 nm)作出响应,在浓度为434 µg mL时实现了78%的显著光热转换效率。它们还可以携带阿霉素(DOX)并在近红外照射下迅速释放。此外,通过对3D乳腺癌模型进行体外测试得出的关于这些微马达生物相容性的初步结果表明其细胞毒性低且蓄积性强。这些有前景的结果表明,此类Fe-rGO核壳型微马达在联合光热疗法中可能具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af64/11279713/fca4b02a5400/pharmaceutics-16-00856-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验