文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进肿瘤治疗:基于蛋白质的纳米颗粒的开发与应用

Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles.

作者信息

Khakpour Shirin, Hosano Nushin, Moosavi-Nejad Zahra, Farajian Amir A, Hosano Hamid

机构信息

Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.

Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.

出版信息

Pharmaceutics. 2024 Jul 1;16(7):887. doi: 10.3390/pharmaceutics16070887.


DOI:10.3390/pharmaceutics16070887
PMID:39065584
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11279530/
Abstract

Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.

摘要

基于蛋白质的纳米颗粒(PNPs)在肿瘤治疗中具有巨大潜力,它结合了靶向递送、低毒性和可定制特性,从而为癌症治疗的创新方法铺平了道路。对于旨在将这些纳米颗粒用于包括肿瘤治疗、药物递送、成像和组织工程等多种应用的研究人员和科学家来说,了解其可用的各种生产方法至关重要。本综述深入探讨了生产PNPs和PNP/药物复合物的现有技术,同时也探索了其他新颖方法。本研究中概述的方法根据其共同的程序步骤分为三个关键类别:溶解度变化、溶剂置换和细流法。这种分类通过提供一个清晰的框架简化了对潜在机制的理解,与其他分类相比具有几个优势。该综述讨论了每种方法的基本原理,强调了影响纳米颗粒大小、形态、稳定性和功能的因素。它还阐述了与每种方法相关的挑战和注意事项,包括可扩展性、可重复性和生物相容性。讨论了PNPs生产的未来前景和新趋势,强调了创新策略克服当前局限性的潜力,这将推动该领域在生物医学和治疗应用方面向前发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/cf97df20915a/pharmaceutics-16-00887-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b5c55e9a298e/pharmaceutics-16-00887-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/d6317a42431c/pharmaceutics-16-00887-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/ccae0eea6cb7/pharmaceutics-16-00887-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/160e9f589c0a/pharmaceutics-16-00887-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/bc79098b62bd/pharmaceutics-16-00887-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/9837ec065d6b/pharmaceutics-16-00887-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/fa5e96a3f5c3/pharmaceutics-16-00887-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/6ec3e908a899/pharmaceutics-16-00887-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/c38d7ef5ad8b/pharmaceutics-16-00887-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b7a371c39506/pharmaceutics-16-00887-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b3a369670c16/pharmaceutics-16-00887-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/dd238b0ba677/pharmaceutics-16-00887-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/9ed26dd8a0ad/pharmaceutics-16-00887-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/cf97df20915a/pharmaceutics-16-00887-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b5c55e9a298e/pharmaceutics-16-00887-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/d6317a42431c/pharmaceutics-16-00887-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/ccae0eea6cb7/pharmaceutics-16-00887-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/160e9f589c0a/pharmaceutics-16-00887-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/bc79098b62bd/pharmaceutics-16-00887-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/9837ec065d6b/pharmaceutics-16-00887-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/fa5e96a3f5c3/pharmaceutics-16-00887-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/6ec3e908a899/pharmaceutics-16-00887-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/c38d7ef5ad8b/pharmaceutics-16-00887-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b7a371c39506/pharmaceutics-16-00887-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/b3a369670c16/pharmaceutics-16-00887-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/dd238b0ba677/pharmaceutics-16-00887-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/9ed26dd8a0ad/pharmaceutics-16-00887-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/11279530/cf97df20915a/pharmaceutics-16-00887-g014.jpg

相似文献

[1]
Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles.

Pharmaceutics. 2024-7-1

[2]
Surface Bio-engineered Polymeric Nanoparticles.

Small. 2024-5

[3]
Exploring the Potentials of Hyaluronic Acid-coated Polymeric Nanoparticles in Enhanced Cancer Treatment by Precision Drug Delivery, Tackling Drug Resistance, and Reshaping the Tumour Micro Environment.

Curr Med Chem. 2024-4-3

[4]
Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging.

Nanomaterials (Basel). 2019-9-16

[5]
New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering.

Adv Exp Med Biol. 2018

[6]
Availability of polymeric nanoparticles for specific enhanced and targeted drug delivery.

Ther Deliv. 2013-10

[7]
The Emerging Role of Cell Membrane-coated Nanomaterials in Cancer Therapy.

Curr Pharm Des. 2024-3-1

[8]
Thermo-sensitive graphene oxide-polymer nanoparticle hybrids: synthesis, characterization, biocompatibility and drug delivery.

J Mater Chem B. 2014-3-14

[9]
A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years.

Pharmaceutics. 2024-5-16

[10]
Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery.

ACS Biomater Sci Eng. 2020-9-14

引用本文的文献

[1]
A comprehensive review on plant-derived bioactive saponins as promising antimicrobial agents: from bioavailability challenges, molecular mechanistic insights to therapeutic applications.

Naunyn Schmiedebergs Arch Pharmacol. 2025-8-21

[2]
Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health.

RSC Adv. 2025-5-8

[3]
Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review.

ACS Omega. 2024-10-10

本文引用的文献

[1]
A new nanobiotic: synthesis and characterization of an albumin nanoparticle with intrinsic antibiotic activity.

Iran J Microbiol. 2023-10

[2]
The Distinct Properties of Polysaccharide Nanoparticles Tune Immune Responses against mRNA Antigen via Stimulator of Interferon Genes-Mediated Autophagy and Inflammasome.

ACS Nano. 2023-11-14

[3]
Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications.

Asian Biomed (Res Rev News). 2020-12-31

[4]
Stealth and pseudo-stealth nanocarriers.

Adv Drug Deliv Rev. 2023-7

[5]
Organic and inorganic nanomaterials: fabrication, properties and applications.

RSC Adv. 2023-5-5

[6]
Smart drug delivery systems for precise cancer therapy.

Acta Pharm Sin B. 2022-11

[7]
Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation.

Int J Biol Macromol. 2023-1-1

[8]
Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches.

Adv Sci (Weinh). 2022-3

[9]
Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release.

J Control Release. 2022-1

[10]
Pulsed Power Applications for Protein Conformational Change and the Permeabilization of Agricultural Products.

Molecules. 2021-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索