Suppr超能文献

一种用于心电图描绘的具有自监督学习的新型深度学习方法。

A New Deep Learning Method with Self-Supervised Learning for Delineation of the Electrocardiogram.

作者信息

Wu Wenwen, Huang Yanqi, Wu Xiaomei

机构信息

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.

出版信息

Entropy (Basel). 2022 Dec 15;24(12):1828. doi: 10.3390/e24121828.

Abstract

Heartbeat characteristic points are the main features of an electrocardiogram (ECG), which can provide important information for ECG-based cardiac diagnosis. In this manuscript, we propose a self-supervised deep learning framework with modified Densenet to detect ECG characteristic points, including the onset, peak and termination points of P-wave, QRS complex wave and T-wave. We extracted high-level features of ECG heartbeats from the QT Database (QTDB) and two other larger datasets, MIT-BIH Arrhythmia Database (MITDB) and MIT-BIH Normal Sinus Rhythm Database (NSRDB) with no human-annotated labels as pre-training. By applying different transformations to ECG signals, the task of discriminating signals before and after transformation was defined as the pretext task. Subsequently, the convolutional layer was frozen and the weights of the self-supervised network were transferred to the downstream task of characteristic point localizations on heart beats in the QT dataset. Finally, the mean ± standard deviation of the detection errors of our proposed self-supervised learning method in QTDB for detecting the onset, peak, and termination points of P-waves, the onset and termination points of QRS waves, and the peak and termination points of T-waves were -0.24 ± 10.04, -0.48 ± 11.69, -0.28 ± 10.19, -3.72 ± 8.18, -4.12 ± 13.54, -0.68 ± 20.42, and 1.34 ± 21.04. The results show that the deep learning network based on the self-supervised framework constructed in this manuscript can accurately detect the feature points of a heartbeat, laying the foundation for automatic extraction of key information related to ECG-based diagnosis.

摘要

心跳特征点是心电图(ECG)的主要特征,可为基于心电图的心脏诊断提供重要信息。在本论文中,我们提出了一种带有改进型密集连接网络(Densenet)的自监督深度学习框架,用于检测心电图特征点,包括P波、QRS复合波和T波的起始点、峰值点和终止点。我们从QT数据库(QTDB)以及另外两个更大的数据集——麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(MITDB)和麻省理工学院 - 贝斯以色列女执事医疗中心正常窦性心律数据库(NSRDB)中提取了心电图心跳的高级特征,这些数据集没有人工标注的标签用于预训练。通过对心电图信号应用不同的变换,将区分变换前后信号的任务定义为前置任务。随后,冻结卷积层,并将自监督网络的权重转移到QT数据集中心跳特征点定位的下游任务。最后,我们提出的自监督学习方法在QTDB中检测P波的起始点、峰值点和终止点、QRS波的起始点和终止点以及T波的峰值点和终止点的检测误差的平均值±标准差分别为-0.24±10.04、-0.48±11.69、-0.28±10.19、-3.72±8.18、-4.12±13.54、-0.68±20.42和1.34±21.04。结果表明,本文构建的基于自监督框架的深度学习网络能够准确检测心跳的特征点,为基于心电图诊断的关键信息自动提取奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa6e/9778283/7ce98402b799/entropy-24-01828-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验