Abdallah Zeina, Pomeroy James W, Blasakis Nicolas, Baltopoulos Athanasios, Kuball Martin
Center for Device Thermography and Reliability (CDTR), University of Bristol, Bristol BS8 1TL, United Kingdom.
Adamant Composites Ltd., Agias lavras & Stadiou Str., Platani-Patras, Achaia GR-26504, Greece.
ACS Appl Electron Mater. 2024 Jun 27;6(7):5183-5189. doi: 10.1021/acsaelm.4c00691. eCollection 2024 Jul 23.
Thermal interface materials are crucial to minimize the thermal resistance between a semiconductor device and a heat sink, especially for high-power electronic devices, which are susceptible to self-heating-induced failures. The effectiveness of these interface materials depends on their low thermal contact resistance coupled with high thermal conductivity. Various characterization techniques are used to determine the thermal properties of the thermal interface materials. However, their bulk or free-standing thermal properties are typically assessed rather than their thermal performance when applied as a thin layer in real application. In this study, we introduce a low-frequency range frequency domain thermoreflectance method that can measure the effective thermal conductivity and volumetric heat capacity of thermal interface materials simultaneously in situ, illustrated on silver-filled thermal interface material samples, offering a distinct advantage over traditional techniques such as ASTM D5470. Monte Carlo fitting is used to quantify the thermal conductivities and heat capacities and their uncertainties, which are compared to a more efficient least-squares method.
热界面材料对于最小化半导体器件与散热器之间的热阻至关重要,特别是对于高功率电子器件而言,这类器件容易因自热引发故障。这些界面材料的有效性取决于其低的热接触电阻以及高的热导率。各种表征技术被用于确定热界面材料的热性能。然而,通常评估的是它们的体相或独立热性能,而非在实际应用中作为薄层应用时的热性能。在本研究中,我们介绍了一种低频范围频域热反射法,该方法能够原位同时测量热界面材料的有效热导率和体积热容,以填充银的热界面材料样品为例进行说明,与诸如ASTM D5470等传统技术相比具有显著优势。蒙特卡罗拟合用于量化热导率和热容及其不确定性,并将其与一种更高效的最小二乘法进行比较。