Miller Jacob M, Tragesser-Tiña Mary E, Turk Samantha M, Rubenstein Eric M
Department of Biology, Ball State University.
Diabetes, Obesity, and Complications Therapeutic Area, Eli Lilly and Company.
MicroPubl Biol. 2024 Jul 12;2024. doi: 10.17912/micropub.biology.001260. eCollection 2024.
We recently discovered that disrupting phospholipid biosynthesis by eliminating the Ino2/4 transcriptional regulator impairs endoplasmic reticulum (ER)-associated degradation (ERAD) in , but the mechanism is unclear. Phosphatidylcholine deficiency has been reported to accelerate degradation of Sec61 translocon beta subunit Sbh1 and ERAD cofactor Cue1. Here, we found that, unlike targeted phosphatidylcholine depletion, deletion does not destabilize Sbh1 or Cue1. However, we observed altered electrophoretic mobility of Sbh1 in Δ yeast, consistent with phospholipid-responsive post-translational modification. A better understanding of the molecular consequences of disrupted lipid homeostasis could lead to enhanced treatments for conditions associated with perturbed lipid biosynthesis.
我们最近发现,通过消除Ino2/4转录调节因子来破坏磷脂生物合成会损害内质网(ER)相关降解(ERAD),但其机制尚不清楚。据报道,磷脂酰胆碱缺乏会加速Sec61转运体β亚基Sbh1和ERAD辅助因子Cue1的降解。在这里,我们发现,与靶向磷脂酰胆碱消耗不同,Ino2/4缺失不会使Sbh1或Cue1不稳定。然而,我们观察到Ino2/4缺失的酵母中Sbh1的电泳迁移率发生了改变,这与磷脂反应性翻译后修饰一致。更好地理解脂质稳态破坏的分子后果可能会增强对与脂质生物合成紊乱相关病症的治疗。