Suppr超能文献

通过随机块模型对文档进行统计聚类。

Statistical clustering of documents via stochastic blockmodels.

作者信息

Atandoh Paul H, Lee Kevin H

机构信息

Department of Mathematics, Mercer University, Macon, GA, USA.

Department of Statistics, Western Michigan University, Kalamazoo, MI, USA.

出版信息

J Appl Stat. 2023 Sep 1;51(10):1878-1893. doi: 10.1080/02664763.2023.2247617. eCollection 2024.

Abstract

As the online market grows rapidly, people are relying more on product review when they purchase the product. Hence, many companies and researchers are interested in analyzing product review which essentially a text data. In the current literature, it is common to use only text analysis tools to analyze text dataset. But in our work, we propose a method that utilizes both text analysis method such as topic modeling and statistical network model to build network among individuals and find interesting communities. We introduce a promising framework that incorporates topic modeling technique to define the edges among the individuals and form a network and uses stochastic blockmodels (SBM) to find the communities. The power of our proposed method is demonstrated in real-world application to Amazon product review dataset.

摘要

随着在线市场的迅速发展,人们在购买产品时越来越依赖产品评论。因此,许多公司和研究人员都对分析产品评论感兴趣,而产品评论本质上是一种文本数据。在当前的文献中,通常只使用文本分析工具来分析文本数据集。但在我们的工作中,我们提出了一种方法,该方法利用主题建模等文本分析方法和统计网络模型来构建个体之间的网络并找到有趣的社区。我们引入了一个有前景的框架,该框架结合主题建模技术来定义个体之间的边并形成一个网络,并使用随机块模型(SBM)来找到社区。我们所提出方法的优势在对亚马逊产品评论数据集的实际应用中得到了证明。

相似文献

1
Statistical clustering of documents via stochastic blockmodels.通过随机块模型对文档进行统计聚类。
J Appl Stat. 2023 Sep 1;51(10):1878-1893. doi: 10.1080/02664763.2023.2247617. eCollection 2024.
6
Stochastic blockmodels and community structure in networks.网络中的随机块模型与社区结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
9
A network approach to topic models.一种用于主题模型的网络方法。
Sci Adv. 2018 Jul 18;4(7):eaaq1360. doi: 10.1126/sciadv.aaq1360. eCollection 2018 Jul.
10
Stochastic blockmodels with a growing number of classes.具有不断增加类别的随机块模型。
Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.

本文引用的文献

1
Fast Markov Clustering Algorithm Based on Belief Dynamics.基于信念动力学的快速马尔可夫聚类算法。
IEEE Trans Cybern. 2023 Jun;53(6):3716-3725. doi: 10.1109/TCYB.2022.3141598. Epub 2023 May 17.
2
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
4
Emergence of Multiplex Communities in Collaboration Networks.合作网络中多重社区的出现。
PLoS One. 2016 Jan 27;11(1):e0147451. doi: 10.1371/journal.pone.0147451. eCollection 2016.
6
Stochastic blockmodels and community structure in networks.网络中的随机块模型与社区结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验