Suppr超能文献

药物数据和疾病自我报告有多相似?在欠发达地区估算慢性病的患病率。

How Similar Are Drug Data and Disease Self-report? Estimating the Prevalence of Chronic Diseases in Less Developed Settings.

机构信息

MD-MPH Program, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Arch Iran Med. 2024 Jul 1;27(7):364-370. doi: 10.34172/aim.27553.

Abstract

BACKGROUND

Drug data has been used to estimate the prevalence of chronic diseases. Disease registries and annual surveys are lacking, especially in less-developed regions. At the same time, insurance drug data and self-reports of medications are easily accessible and inexpensive. We aim to investigate the similarity of prevalence estimation between self-report data of some chronic diseases and drug data in a less developed setting in southwestern Iran.

METHODS

Baseline data from the Pars Cohort Study (PCS) was re-analyzed. The use of disease-related drugs were compared against self-report of each disease (hypertension [HTN], diabetes mellitus [DM], heart disease, stroke, chronic obstructive pulmonary disease [COPD], sleep disorder, anxiety, depression, gastroesophageal reflux disease [GERD], irritable bowel syndrome [IBS], and functional constipation [FC]). We used sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the Jaccard similarity index.

RESULTS

The top five similarities were observed in DM (54%), HTN (53%), heart disease (32%), COPD (30%), and GERD (15%). The similarity between drug use and self-report was found to be low in IBS (2%), stroke (5%), depression (9%), sleep disorders (10%), and anxiety disorders (11%).

CONCLUSION

Self-reports of diseases and the drug data show a different picture of most diseases' prevalence in our setting. It seems that drug data alone cannot estimate the prevalence of diseases in settings similar to ours. We recommend using drug data in combination with self-report data for epidemiological investigation in the less-developed setting.

摘要

背景

药物数据已被用于估计慢性病的患病率。疾病登记和年度调查缺乏,特别是在欠发达地区。与此同时,保险药物数据和药物自我报告易于获取且价格低廉。我们旨在研究在伊朗西南部欠发达地区,使用自我报告的一些慢性病数据和药物数据进行患病率估计的相似性。

方法

重新分析了 Pars 队列研究(PCS)的基线数据。将与疾病相关的药物使用情况与每种疾病(高血压[HTN]、糖尿病[DM]、心脏病、中风、慢性阻塞性肺疾病[COPD]、睡眠障碍、焦虑、抑郁、胃食管反流病[GERD]、肠易激综合征[IBS]和功能性便秘[FC])的自我报告进行比较。我们使用了敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和杰卡德相似性指数。

结果

在 DM(54%)、HTN(53%)、心脏病(32%)、COPD(30%)和 GERD(15%)中观察到最高的五个相似性。药物使用和自我报告之间的相似性在 IBS(2%)、中风(5%)、抑郁(9%)、睡眠障碍(10%)和焦虑障碍(11%)中较低。

结论

在我们的研究环境中,疾病的自我报告和药物数据显示出大多数疾病患病率的不同情况。似乎仅使用药物数据无法估计类似于我们的环境中的疾病患病率。我们建议在欠发达地区的流行病学调查中,将药物数据与自我报告数据结合使用。

相似文献

本文引用的文献

5
Management of functional constipation in children and adults.儿童和成人功能性便秘的管理。
Nat Rev Gastroenterol Hepatol. 2020 Jan;17(1):21-39. doi: 10.1038/s41575-019-0222-y. Epub 2019 Nov 5.
10
Undertreatment of people with major depressive disorder in 21 countries.21个国家中重度抑郁症患者的治疗不足。
Br J Psychiatry. 2017 Feb;210(2):119-124. doi: 10.1192/bjp.bp.116.188078. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验