Suppr超能文献

基于对数螺旋搜索和选择机制的算法优化器在不同光伏电池模型参数提取中的性能评估。

Performance evaluation of logarithmic spiral search and selective mechanism based arithmetic optimizer for parameter extraction of different photovoltaic cell models.

机构信息

Vocational School of Social Sciences, Muş Alparslan University, Muş, Turkey.

Department of Computer Engineering, Batman University, Batman, Turkey.

出版信息

PLoS One. 2024 Jul 29;19(7):e0308110. doi: 10.1371/journal.pone.0308110. eCollection 2024.

Abstract

The imperative shift towards renewable energy sources, driven by environmental concerns and climate change, has cast a spotlight on solar energy as a clean, abundant, and cost-effective solution. To harness its potential, accurate modeling of photovoltaic (PV) systems is crucial. However, this relies on estimating elusive parameters concealed within PV models. This study addresses these challenges through innovative parameter estimation by introducing the logarithmic spiral search and selective mechanism-based arithmetic optimization algorithm (Ls-AOA). Ls-AOA is an improved version of the arithmetic optimization algorithm (AOA). It combines logarithmic search behavior and a selective mechanism to improve exploration capabilities. This makes it easier to obtain accurate parameter extraction. The RTC France solar cell is employed as a benchmark case study in order to ensure consistency and impartiality. A standardized experimental framework integrates Ls-AOA into the parameter tuning process for three PV models: single-diode, double-diode, and three-diode models. The choice of RTC France solar cell underscores its significance in the field, providing a robust evaluation platform for Ls-AOA. Statistical and convergence analyses enable rigorous assessment. Ls-AOA consistently attains low RMSE values, indicating accurate current-voltage characteristic estimation. Smooth convergence behavior reinforces its efficacy. Comparing Ls-AOA to other methods strengthens its superiority in optimizing solar PV model parameters, showing that it has the potential to improve the use of solar energy.

摘要

在环境问题和气候变化的推动下,人们迫切需要转向可再生能源,太阳能作为一种清洁、丰富且具有成本效益的解决方案而备受关注。为了充分利用太阳能,精确建模光伏 (PV) 系统至关重要。然而,这需要估计 PV 模型中隐藏的难以捉摸的参数。本研究通过引入对数螺旋搜索和基于选择性机制的算术优化算法 (Ls-AOA) 来进行创新的参数估计,从而解决了这些挑战。Ls-AOA 是算术优化算法 (AOA) 的改进版本。它结合了对数搜索行为和选择性机制,以提高探索能力。这使得更易于获得准确的参数提取。选择 RTC 法国太阳能电池作为基准案例研究,以确保一致性和公正性。标准化实验框架将 Ls-AOA 集成到三个 PV 模型的参数调整过程中:单二极管、双二极管和三二极管模型。选择 RTC 法国太阳能电池突出了其在该领域的重要性,为 Ls-AOA 提供了一个强大的评估平台。统计和收敛分析可进行严格评估。Ls-AOA 始终能达到较低的均方根误差 (RMSE) 值,表明能够准确估计电流-电压特性。其平滑的收敛行为也证实了其有效性。将 Ls-AOA 与其他方法进行比较,可突出其在优化太阳能 PV 模型参数方面的优势,表明其具有改善太阳能利用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b122/11285964/3a7cdd560d13/pone.0308110.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验