Suppr超能文献

处于风险中的精神状态的自然语言处理:通过语义动力学和图论加强对思维障碍和精神病性特征的评估

Natural language processing in at-risk mental states: enhancing the assessment of thought disorders and psychotic traits with semantic dynamics and graph theory.

作者信息

Argolo Felipe, Ramos William Henrique de Paula, Mota Natalia Bezerra, Gondim João Medrado, Lopes-Rocha Ana Caroline, Andrade Julio Cesar, van de Bilt Martinus Theodorus, de Jesus Leonardo Peroni, Jafet Andrea, Cecchi Guillermo, Gattaz Wagner Farid, Corcoran Cheryl Mary, Ara Anderson, Loch Alexandre Andrade

机构信息

Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.

Departamento de Estatística, Universidade Federal do Paraná, Curitiba, PR, Brazil.

出版信息

Braz J Psychiatry. 2024;46:e20233419. doi: 10.47626/1516-4446-2023-3419. Epub 2024 Jul 29.

Abstract

OBJECTIVE

Verbal communication contains key information for mental health assessment. Researchers have linked psychopathology phenomena to certain counterparts in natural language processing. We characterized subtle impairments in the early stages of psychosis, developing new analysis techniques, which led to a comprehensive map associating features of natural language processing with the full range of clinical presentation.

METHODS

We used natural language processing to assess spontaneous and elicited speech by 60 individuals with at-risk mental states and 73 controls who were screened from 4,500 quota-sampled Portuguese speaking residents of São Paulo, Brazil. Psychotic symptoms were independently assessed with the Structured Interview for Psychosis-Risk Syndromes. Speech features (e.g., sentiments and semantic coherence), including novel ones, were correlated with psychotic traits (Spearman's-?) and at-risk mental state status (general linear models and machine-learning ensembles).

RESULTS

Natural language processing features were informative for classification, presenting a balanced accuracy of 86%. Features such as semantic laminarity (as perseveration), semantic recurrence time (as circumstantiality), and average centrality in word repetition graphs carried the most information and were directly correlated with psychotic symptoms. Grammatical tagging (e.g., use of adjectives) was the most relevant standard measure.

CONCLUSION

Subtle speech impairments can be detected by sensitive methods and can be used in at-risk mental states screening. We have outlined a blueprint for speech-based evaluation, pairing features to standard psychometric items for thought disorder.

摘要

目的

言语交流包含心理健康评估的关键信息。研究人员已将精神病理学现象与自然语言处理中的某些对应现象联系起来。我们对精神病早期的细微损伤进行了特征描述,开发了新的分析技术,从而形成了一幅将自然语言处理特征与整个临床表现范围相关联的综合图谱。

方法

我们使用自然语言处理来评估60名处于精神状态风险中的个体和73名对照者的自发言语和诱发言语,这些个体和对照者是从巴西圣保罗4500名按配额抽样的讲葡萄牙语居民中筛选出来的。使用精神病风险综合征结构化访谈对精神病症状进行独立评估。言语特征(如情感和语义连贯),包括新的特征,与精神病特征(斯皮尔曼等级相关系数)和处于精神状态风险的状况(一般线性模型和机器学习集成)相关。

结果

自然语言处理特征对分类具有信息价值,平衡准确率为86%。诸如语义分层(如持续言语)、语义重复时间(如牵连观念)和单词重复图中的平均中心性等特征携带的信息最多,并且与精神病症状直接相关。语法标注(如形容词的使用)是最相关的标准测量方法。

结论

可以通过敏感方法检测到细微的言语损伤,并可用于处于精神状态风险的筛查。我们已经勾勒出了基于言语评估的蓝图,将特征与思维障碍的标准心理测量项目配对。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2a1/11773321/417c7c69746d/bjp-46-e20233419-gf01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验