Suppr超能文献

验证样本外受访者中预测的个体治疗效果。

Validation of predicted individual treatment effects in out of sample respondents.

机构信息

Center on Alcohol, Substance Use, and Addictions, University of New Mexico, Albuquerque, New Mexico, USA.

Chair for Computational Statistics, University of Regensburg, Regensburg, Germany.

出版信息

Stat Med. 2024 Sep 30;43(22):4349-4360. doi: 10.1002/sim.10187. Epub 2024 Jul 29.

Abstract

Personalized medicine promises the ability to improve patient outcomes by tailoring treatment recommendations to the likelihood that any given patient will respond well to a given treatment. It is important that predictions of treatment response be validated and replicated in independent data to support their use in clinical practice. In this paper, we propose and test an approach for validating predictions of individual treatment effects with continuous outcomes across samples that uses matching in a test (validation) sample to match individuals in the treatment and control arms based on their predicted treatment response and their predicted response under control. To examine the proposed validation approach, we conducted simulations where test data is generated from either an identical, similar, or unrelated process to the training data. We also examined the impact of nuisance variables. To demonstrate the use of this validation procedure in the context of predicting individual treatment effects in the treatment of alcohol use disorder, we apply our validation procedure using data from a clinical trial of combined behavioral and pharmacotherapy treatments. We find that the validation algorithm accurately confirms validation and lack of validation, and also provides insights into cases where test data were generated under similar, but not identical conditions. We also show that the presence of nuisance variables detrimentally impacts algorithm performance, which can be partially reduced though the use of variable selection methods. An advantage of the approach is that it can be widely applied to different predictive methods.

摘要

个性化医学有望通过根据特定患者对特定治疗的反应可能性来定制治疗建议,从而改善患者的预后。重要的是,治疗反应的预测需要在独立数据中得到验证和复制,以支持其在临床实践中的应用。在本文中,我们提出并测试了一种针对连续结局的个体治疗效果预测的验证方法,该方法在测试(验证)样本中使用匹配来根据个体的预测治疗反应和对照下的预测反应来匹配治疗组和对照组的个体。为了检验所提出的验证方法,我们进行了模拟,其中测试数据是从与训练数据相同、相似或不相关的过程中生成的。我们还研究了混杂变量的影响。为了展示这种验证程序在预测酒精使用障碍治疗中个体治疗效果的应用,我们使用一项联合行为和药物治疗的临床试验数据应用我们的验证程序。我们发现,验证算法准确地确认了验证和未验证的情况,并为测试数据在相似但不相同的条件下生成的情况提供了一些见解。我们还表明,混杂变量的存在会对算法性能产生不利影响,通过使用变量选择方法可以部分减少这种影响。该方法的一个优势是它可以广泛应用于不同的预测方法。

相似文献

5
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

本文引用的文献

9
Mantle cell lymphoma.套细胞淋巴瘤。
Crit Rev Oncol Hematol. 2020 Sep;153:103038. doi: 10.1016/j.critrevonc.2020.103038. Epub 2020 Jul 4.
10
The future of translational research on alcohol use disorder.酒精使用障碍转化研究的未来。
Addict Biol. 2021 Mar;26(2):e12903. doi: 10.1111/adb.12903. Epub 2020 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验