Suppr超能文献

使用混合放射组学分析的特发性肺纤维化患者预后预测模型

Prediction model for patient prognosis in idiopathic pulmonary fibrosis using hybrid radiomics analysis.

作者信息

Kawahara Daisuke, Masuda Takeshi, Nishioka Riku, Namba Masashi, Imano Nobuki, Yamaguchi Kakuhiro, Sakamoto Shinjiro, Horimasu Yasushi, Miyamoto Shintaro, Nakashima Taku, Iwamoto Hiroshi, Ohshimo Shinichiro, Fujitaka Kazunori, Hamada Hironobu, Hattori Noboru, Nagata Yasushi

机构信息

Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, 1-3-2 Kagamiyama, Hiroshima 734-8551, Japan.

Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, Japan.

出版信息

Res Diagn Interv Imaging. 2022 Oct 29;4:100017. doi: 10.1016/j.redii.2022.100017. eCollection 2022 Dec.

Abstract

OBJECTIVES

To develop an imaging prognostic model for idiopathic pulmonary fibrosis (IPF) patients using hybrid auto-segmentation radiomics analysis, and compare the predictive ability between the radiomics analysis and conventional visual score methods.

METHODS

Data from 72 IPF patients who had undergone CT were analyzed. In the radiomics analysis, quantitative CT analysis was performed using the semi-auto-segmentation method. In the visual method, the extent of radiologic abnormalities was evaluated and the overall percentage of lung involvement was calculated by averaging values for six lung zones. Using a training cohort of 50 cases, we generated a radiomics model and a visual score model. Subsequently, we investigated the predictive ability of these models in a testing cohort of 22 cases.

RESULTS

Three significant prognostic factors such as contrast, Idn, and cluster shade were selected by LASSO Cox regression analysis. In the visual method, multivariate Cox regression analysis revealed that honeycombing and reticulation were significant prognostic factors. Subsequently, a predictive nomogram for prognosis in IPF patients was established using these factors. In the testing cohort, the c-index of the visual and radiomics nomograms were 0.68 and 0.74, respectively. When dividing the cohort into high-risk and low-risk groups using the median nomogram score, significant differences in overall survival (OS) in the visual and radiomics models were observed (P=0.000 and P=0.0003, respectively).

CONCLUSIONS

The prediction model with hybrid radiomics analysis had a better ability to predict OS in IPF patients than that of the visual method.

摘要

目的

利用混合自动分割放射组学分析为特发性肺纤维化(IPF)患者建立成像预后模型,并比较放射组学分析与传统视觉评分方法的预测能力。

方法

分析72例接受过CT检查的IPF患者的数据。在放射组学分析中,采用半自动分割方法进行定量CT分析。在视觉方法中,评估放射学异常的范围,并通过对六个肺区的值求平均值来计算肺受累的总体百分比。使用50例患者的训练队列,我们生成了一个放射组学模型和一个视觉评分模型。随后,我们在22例患者的测试队列中研究了这些模型的预测能力。

结果

通过LASSO Cox回归分析选择了对比度、Idn和聚类阴影等三个显著的预后因素。在视觉方法中,多变量Cox回归分析显示蜂窝状和网状结构是显著的预后因素。随后,利用这些因素建立了IPF患者预后的预测列线图。在测试队列中,视觉和放射组学列线图的c指数分别为0.68和0.74。当使用列线图评分中位数将队列分为高风险和低风险组时,在视觉和放射组学模型中观察到总生存期(OS)存在显著差异(分别为P = 0.000和P = 0.0003)。

结论

与视觉方法相比,混合放射组学分析的预测模型在预测IPF患者的OS方面具有更好的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f0/11265392/e5be4c39cb51/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验