Suppr超能文献

凤凰磁共振成像模拟框架:一个基于 GPU 并具有运行时动态代码执行功能的磁共振成像模拟框架。

PhoenixMR: A GPU-based MRI simulation framework with runtime-dynamic code execution.

机构信息

University of Canterbury, Christchurch, New Zealand.

Te Whatu Ora - Health New Zealand, Wellington, New Zealand.

出版信息

Med Phys. 2024 Sep;51(9):6120-6133. doi: 10.1002/mp.17273. Epub 2024 Jul 30.

Abstract

BACKGROUND

Simulations of physical processes and behavior can provide unique insights and understanding of real-world problems. Magnetic Resonance Imaging (MRI) is an imaging technique with several components of complexity. Several of these components have been characterized and simulated in the past. However, several computational challenges prevent simulations from being simultaneously fast, flexible, and accurate.

PURPOSE

The simulation of MRI experiments is underutilized by medical physicists and researchers using currently available simulators due to reasons including speed, accuracy, and extensibility constraints. This paper introduces an innovative MRI simulation engine and framework that aims to overcome these issues making available realistic and fast MRI simulation.

METHODS

Using the CUDA C/C++ programing language, an MRI simulation engine (PhoenixMR), incorporating a Turing-complete virtual machine (VM) to simulate abstract spatiotemporal complexities, was developed. This engine solves a set of time-discrete Bloch equations using the symmetric operator splitting technique. An extensible front-end framework package (written in Python) aids the use of PhoenixMR to simplify simulation development.

RESULTS

The PhoenixMR library and front-end codes have been developed and tested. A set of example simulations were performed to demonstrate the ease of use and flexibility of simulation components such as geometrical setup, pulse sequence design, phantom design, and so forth. Initial validation of PhoenixMR is performed by comparing its accuracy and performance against a widely used MRI simulator using identical simulation parameters. Validation results show PhoenixMR simulations are three orders of magnitude faster. There is also strong agreement between models.

CONCLUSIONS

A novel MRI simulation platform called PhoenixMR has been introduced. This research tool is designed to be usable by physicists and engineers interested in performing MRI simulations. Examples are shown demonstrating the accuracy, flexibility, and usability of PhoenixMR in several key areas of MRI simulation.

摘要

背景

物理过程和行为的模拟可以为实际问题提供独特的见解和理解。磁共振成像(MRI)是一种具有多个复杂组成部分的成像技术。过去已经对其中的一些组成部分进行了特征描述和模拟。然而,由于速度、准确性和可扩展性等方面的限制,一些计算方面的挑战阻碍了模拟的同时实现快速、灵活和准确。

目的

由于速度、准确性和可扩展性等方面的限制,目前可用的模拟器对医学物理学家和研究人员来说,MRI 实验的模拟利用不足。本文介绍了一种创新的 MRI 模拟引擎和框架,旨在克服这些问题,提供逼真且快速的 MRI 模拟。

方法

使用 CUDA C/C++编程语言,开发了一种 MRI 模拟引擎(PhoenixMR),它结合了一个图灵完备的虚拟机(VM)来模拟抽象的时空复杂性。该引擎使用对称算子分裂技术来求解一组时离散的 Bloch 方程。一个可扩展的前端框架包(用 Python 编写)帮助使用 PhoenixMR 简化模拟开发。

结果

已经开发和测试了 PhoenixMR 库和前端代码。进行了一组示例模拟,以展示几何结构、脉冲序列设计、体模设计等模拟组件的易用性和灵活性。通过使用相同的模拟参数,将 PhoenixMR 的准确性和性能与广泛使用的 MRI 模拟器进行比较,对 PhoenixMR 进行了初步验证。验证结果表明,PhoenixMR 模拟的速度快三个数量级。模型之间也具有很强的一致性。

结论

引入了一种名为 PhoenixMR 的新型 MRI 模拟平台。这个研究工具旨在供对执行 MRI 模拟感兴趣的物理学家和工程师使用。在几个关键的 MRI 模拟领域中,通过示例展示了 PhoenixMR 的准确性、灵活性和易用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验