Suppr超能文献

使用卷积神经网络对自发荧光强度图像中的T细胞活性进行分类。

Classifying T cell activity in autofluorescence intensity images with convolutional neural networks.

作者信息

Wang Zijie J, Walsh Alex J, Skala Melissa C, Gitter Anthony

机构信息

Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin.

Morgridge Institute for Research, Madison, Wisconsin.

出版信息

J Biophotonics. 2020 Mar;13(3):e201960050. doi: 10.1002/jbio.201960050. Epub 2019 Dec 15.

Abstract

The importance of T cells in immunotherapy has motivated developing technologies to improve therapeutic efficacy. One objective is assessing antigen-induced T cell activation because only functionally active T cells are capable of killing the desired targets. Autofluorescence imaging can distinguish T cell activity states in a non-destructive manner by detecting endogenous changes in metabolic co-enzymes such as NAD(P)H. However, recognizing robust activity patterns is computationally challenging in the absence of exogenous labels. We demonstrate machine learning methods that can accurately classify T cell activity across human donors from NAD(P)H intensity images. Using 8260 cropped single-cell images from six donors, we evaluate classifiers ranging from traditional models that use previously-extracted image features to convolutional neural networks (CNNs) pre-trained on general non-biological images. Adapting pre-trained CNNs for the T cell activity classification task provides substantially better performance than traditional models or a simple CNN trained with the autofluorescence images alone. Visualizing the images with dimension reduction provides intuition into why the CNNs achieve higher accuracy than other approaches. Our image processing and classifier training software is available at https://github.com/gitter-lab/t-cell-classification.

摘要

T细胞在免疫治疗中的重要性推动了旨在提高治疗效果的技术发展。一个目标是评估抗原诱导的T细胞活化,因为只有功能活跃的T细胞才有能力杀死所需的靶标。自体荧光成像可以通过检测代谢辅酶(如NAD(P)H)的内源性变化,以非破坏性方式区分T细胞的活性状态。然而,在没有外源性标记的情况下,识别稳健的活性模式在计算上具有挑战性。我们展示了机器学习方法,该方法可以根据NAD(P)H强度图像准确地对来自不同人类供体的T细胞活性进行分类。我们使用来自六个供体的8260张裁剪后的单细胞图像,评估了从使用先前提取的图像特征的传统模型到在一般非生物图像上预训练的卷积神经网络(CNN)等分类器。将预训练的CNN应用于T细胞活性分类任务,其性能比传统模型或仅使用自体荧光图像训练的简单CNN要好得多。通过降维对图像进行可视化,可以直观地了解为什么CNN比其他方法具有更高的准确率。我们的图像处理和分类器训练软件可在https://github.com/gitter-lab/t-cell-classification获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9479/7065628/3ce739285929/JBIO-13-e201960050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验