Suppr超能文献

探索一类独特的黄素酶:核糖体 RNA 二氢尿嘧啶合酶的鉴定和生化特性。

Exploring a unique class of flavoenzymes: Identification and biochemical characterization of ribosomal RNA dihydrouridine synthase.

机构信息

Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252 Paris Cedex 05, France.

Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2401981121. doi: 10.1073/pnas.2401981121. Epub 2024 Jul 30.

Abstract

Dihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive. This study introduces a rapid method for detecting D in rRNA, involving reverse transcriptase-blockage at the rhodamine-labeled D2449 site, followed by PCR amplification (RhoRT-PCR). Through analysis of rRNA from diverse strains, harboring chromosomal or single-gene deletions, we pinpoint the gene as the ribosomal dihydrouridine synthase, now designated as RdsA. Biochemical characterizations uncovered RdsA as a unique class of flavoenzymes, dependent on FAD and NADH, with a complex structural topology. In vitro assays demonstrated that RdsA dihydrouridylates a short rRNA transcript mimicking the local structure of the peptidyl transferase site. This suggests an early introduction of this modification before ribosome assembly. Phylogenetic studies unveiled the widespread distribution of the gene in the bacterial kingdom, emphasizing the conservation of rRNA dihydrouridylation. In a broader context, these findings underscore nature's preference for utilizing reduced flavin in the reduction of uridines and their derivatives.

摘要

二氢尿嘧啶 (D) 是转录组中普遍存在且在进化上保守的碱基,主要存在于 tRNA 中,在 mRNA 中也有少量存在。值得注意的是,这种修饰存在于 23S rRNA 的位置 2449 处,位于核糖体的肽基转移酶位点附近。尽管先前在 基因组中鉴定出三种二氢尿嘧啶合酶 (DUS),这是一组已知在 tRNA 和 mRNA 中引入 D 的 NADPH 和 FMN 依赖性酶,但负责沉积 D2449 的酶的特征仍然难以捉摸。本研究引入了一种快速检测 rRNA 中 D 的方法,涉及在罗丹明标记的 D2449 位点阻断逆转录酶,然后进行 PCR 扩增(RhoRT-PCR)。通过分析来自不同 菌株的 rRNA,这些菌株含有染色体或单基因缺失,我们确定 基因是核糖体二氢尿嘧啶合酶,现在命名为 RdsA。生化特征揭示了 RdsA 是一种独特的黄素酶类,依赖于 FAD 和 NADH,具有复杂的结构拓扑。体外实验表明,RdsA 使短 rRNA 转录物二氢尿嘧啶化,模拟肽基转移酶位点的局部结构。这表明在核糖体组装之前就引入了这种修饰。系统发育研究揭示了 基因在细菌王国中的广泛分布,强调了 rRNA 二氢尿嘧啶化的保守性。从更广泛的角度来看,这些发现强调了自然界偏爱利用还原黄素还原尿嘧啶及其衍生物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac6/11317573/6cae9e604b32/pnas.2401981121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验