Suppr超能文献

经子宫内递送达靶可离子化脂质纳米颗粒促进了造血干细胞的体内基因编辑。

In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.

Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2400783121. doi: 10.1073/pnas.2400783121. Epub 2024 Jul 30.

Abstract

Monogenic blood diseases are among the most common genetic disorders worldwide. These diseases result in significant pediatric and adult morbidity, and some can result in death prior to birth. Novel ex vivo hematopoietic stem cell (HSC) gene editing therapies hold tremendous promise to alter the therapeutic landscape but are not without potential limitations. In vivo gene editing therapies offer a potentially safer and more accessible treatment for these diseases but are hindered by a lack of delivery vectors targeting HSCs, which reside in the difficult-to-access bone marrow niche. Here, we propose that this biological barrier can be overcome by taking advantage of HSC residence in the easily accessible liver during fetal development. To facilitate the delivery of gene editing cargo to fetal HSCs, we developed an ionizable lipid nanoparticle (LNP) platform targeting the CD45 receptor on the surface of HSCs. After validating that targeted LNPs improved messenger ribonucleic acid (mRNA) delivery to hematopoietic lineage cells via a CD45-specific mechanism in vitro, we demonstrated that this platform mediated safe, potent, and long-term gene modulation of HSCs in vivo in multiple mouse models. We further optimized this LNP platform in vitro to encapsulate and deliver CRISPR-based nucleic acid cargos. Finally, we showed that optimized and targeted LNPs enhanced gene editing at a proof-of-concept locus in fetal HSCs after a single in utero intravenous injection. By targeting HSCs in vivo during fetal development, our Systematically optimized Targeted Editing Machinery (STEM) LNPs may provide a translatable strategy to treat monogenic blood diseases before birth.

摘要

单基因血液疾病是全球最常见的遗传疾病之一。这些疾病导致儿童和成人发病率显著增加,有些疾病甚至会导致胎儿在出生前死亡。新型体外造血干细胞 (HSC) 基因编辑疗法具有改变治疗前景的巨大潜力,但并非没有潜在的局限性。体内基因编辑疗法为这些疾病提供了一种潜在更安全、更易获得的治疗方法,但由于缺乏针对 HSCs 的递送载体,而 HSCs 存在于难以接近的骨髓龛中,因此受到限制。在这里,我们提出可以利用 HSC 在胎儿发育期间驻留在易于接近的肝脏中的特性来克服这一生物学障碍。为了促进基因编辑货物向胎儿 HSC 的递送,我们开发了一种针对 HSC 表面 CD45 受体的可离子化脂质纳米颗粒 (LNP) 平台。在验证靶向 LNP 通过体外 CD45 特异性机制改善了信使核糖核酸 (mRNA) 向造血谱系细胞的递送之后,我们证明了该平台介导了多种小鼠模型中体内 HSC 的安全、有效和长期基因调节。我们进一步在体外优化了该 LNP 平台以封装和递送基于 CRISPR 的核酸货物。最后,我们表明,经过优化和靶向的 LNP 增强了单次宫内静脉注射后胎儿 HSC 中概念验证基因座的基因编辑。通过在胎儿发育期间体内靶向 HSC,我们的系统优化靶向编辑机制 (STEM) LNP 可能为产前治疗单基因血液疾病提供一种可转化的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f9/11317576/128cddeb70b9/pnas.2400783121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验