Suppr超能文献

基于改进 YOLOv5 的苹果叶部病害检测方法。

An improved YOLOv5-based apple leaf disease detection method.

机构信息

School of Computer and Information Engineering, Fuyang Normal University, Fuyang, 236037, Anhui, China.

出版信息

Sci Rep. 2024 Jul 30;14(1):17508. doi: 10.1038/s41598-024-67924-8.

Abstract

The effective identification of fruit tree leaf disease is of great practical significance to reduce pesticide spraying, improve fruit yield and realize ecological agriculture. Computer vision technology can be effectively identifying and prevent plant diseases and insect pests. However, the lack of consideration of disease diversity and accuracy of existing detection models hinders their application and development in the field of plant pest detection. This paper proposes an efficient detection model of apple leaf disease spot through the improvement of the traditional Yolov5 detection network called A-Net. In order to significantly increase the A-Net's detection speed and accuracy, the A-Net model applies the loss function Wise-IoU, which includes the attention mechanism and the dynamic focusing mechanism, to the Yolov5 network model. The RepVGG module is then used to replace the original model's convolution module. The experimental results show that the improved model effectively suppresses the growth of some error weights. Compared with several object detection models, the improved A-Net model has a Mean Average Precision across IoU threshold 0.5 and an accuracy of 92.7%, which fully proves that the improved A-Net model has more advantages in detecting apple leaf diseases.

摘要

有效识别果树叶片病害对减少农药喷洒、提高果实产量和实现生态农业具有重要意义。计算机视觉技术可以有效识别和防治植物病虫害。然而,现有检测模型对病害多样性和准确性的考虑不足,阻碍了其在植物病虫害检测领域的应用和发展。本文通过对传统 Yolov5 检测网络进行改进,提出了一种名为 A-Net 的苹果叶斑病高效检测模型。为了显著提高 A-Net 的检测速度和准确性,该模型在 Yolov5 网络模型中应用了包含注意力机制和动态聚焦机制的损失函数 Wise-IoU。然后,使用 RepVGG 模块替换原始模型的卷积模块。实验结果表明,改进后的模型有效抑制了部分错误权重的增长。与几种目标检测模型相比,改进后的 A-Net 模型在 IoU 阈值 0.5 处的平均精度均值和准确率分别达到 92.7%,充分证明了改进后的 A-Net 模型在检测苹果叶病方面具有更多优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e699/11289385/bd377e576783/41598_2024_67924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验