Suppr超能文献

人工智能在妇幼保健中的应用:人工智能能否开启新篇章?一种观点。

Artificial Intelligence for Women and Child Healthcare: Is AI Able to Change the Beginning of a New Story? A Perspective.

作者信息

Endo Patricia Takako

机构信息

Programa de Pós-Graduação em Engenharia da Computação Universidade de Pernambuco (UPE) Recife Pernambuco Brazil.

出版信息

Health Sci Rep. 2025 May 5;8(5):e70779. doi: 10.1002/hsr2.70779. eCollection 2025 May.

Abstract

BACKGROUND AND AIMS

Maternal and neonatal mortality remain critical global health challenges, particularly in low-resource settings where preventable deaths occur due to inadequate access to timely care. This article explores the potential of Artificial Intelligence (AI) to enhance maternal and child healthcare by improving early risk identification, diagnosis, treatment recommendations, and postpartum monitoring.

METHODS

It explores the use of AI in identifying pregnancy-related risks, recommending treatments, predicting adverse outcomes, and monitoring postpartum and neonatal care. Various AI models, including supervised machine learning, Large Language Models (LLMs), and Small/Medium Language Models (SLMs/MLMs), are discussed in terms of their feasibility into resource-limited healthcare systems.

RESULTS

AI has demonstrated significant potential in identifying pregnancy-related risks, recommending treatments, predicting adverse outcomes, and supporting postpartum and neonatal care. While AI-driven solutions can optimize healthcare decision-making and resource allocation, challenges such as data availability, integration into clinical workflows, and ethical considerations must be addressed for widespread adoption.

CONCLUSION

AI offers promising solutions to reduce maternal and neonatal mortality by enhancing risk detection and clinical decision-making. However, its real-world implementation requires overcoming barriers related to data quality, infrastructure, and equitable deployment. Future efforts should focus on data standardization, AI model optimization for resource-limited settings, and ethical considerations in clinical integration.

摘要

背景与目标

孕产妇和新生儿死亡率仍然是全球严峻的健康挑战,尤其是在资源匮乏地区,由于无法及时获得医疗护理,可预防的死亡时有发生。本文探讨了人工智能(AI)通过改善早期风险识别、诊断、治疗建议和产后监测来加强母婴保健的潜力。

方法

探讨了人工智能在识别妊娠相关风险、推荐治疗方法、预测不良结局以及监测产后和新生儿护理方面的应用。讨论了各种人工智能模型,包括监督式机器学习、大语言模型(LLMs)和小/中语言模型(SLMs/MLMs)在资源有限的医疗系统中的可行性。

结果

人工智能在识别妊娠相关风险、推荐治疗方法、预测不良结局以及支持产后和新生儿护理方面已显示出巨大潜力。虽然人工智能驱动的解决方案可以优化医疗决策和资源分配,但要广泛采用,还必须解决数据可用性、融入临床工作流程以及伦理考量等挑战。

结论

人工智能通过加强风险检测和临床决策,为降低孕产妇和新生儿死亡率提供了有前景的解决方案。然而,其在现实世界中的实施需要克服与数据质量、基础设施和公平部署相关的障碍。未来的工作应侧重于数据标准化、针对资源有限环境的人工智能模型优化以及临床整合中的伦理考量。

相似文献

2
Utilizing large language models for gastroenterology research: a conceptual framework.利用大语言模型进行胃肠病学研究:一个概念框架。
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.
4
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.

本文引用的文献

1
Preeclampsia and its prediction: traditional versus contemporary predictive methods.子痫前期及其预测:传统与当代预测方法。
J Matern Fetal Neonatal Med. 2024 Dec;37(1):2388171. doi: 10.1080/14767058.2024.2388171. Epub 2024 Aug 6.
8
Prediction of preterm birth using artificial intelligence: a systematic review.使用人工智能预测早产:系统评价。
J Obstet Gynaecol. 2022 Aug;42(6):1662-1668. doi: 10.1080/01443615.2022.2056828. Epub 2022 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验