Suppr超能文献

UMAHand:典型手部活动的惯性信号数据集。

UMAHand: A dataset of inertial signals of typical hand activities.

作者信息

Casilari Eduardo, Barbosa-Galeano Jennifer, González-Cañete Francisco J

机构信息

ETS Ingeniería de Telecomunicación, Universidad de Málaga, Bulevar Louis Pasteur 35, Málaga 29071, Spain.

出版信息

Data Brief. 2024 Jul 10;55:110731. doi: 10.1016/j.dib.2024.110731. eCollection 2024 Aug.

Abstract

Given the popularity of wrist-worn devices, particularly smartwatches, the identification of manual movement patterns has become of utmost interest within the research field of Human Activity Recognition (HAR) systems. In this context, by leveraging the numerous sensors natively embedded in smartwatches, the HAR functionalities that can be implemented in a watch via software and in a very cost-efficient way cover a wide variety of applications, ranging from fitness trackers to gesture detectors aimed at disabled individuals (e.g., for sending alarms), promoting behavioral activation or healthy lifestyle habits. In this regard, for the development of artificial intelligence algorithms capable of effectively discriminating these activities, it is of great importance to have repositories of movements that allow the scientific community to train, evaluate, and benchmark new proposals of movement detectors. The UMAHand dataset offers a collection of files containing the signals captured by a Shimmer 3 sensor node, which includes an accelerometer, a gyroscope, a magnetometer and a barometer, during the execution of different typical hand movements. For that purpose, the measurements from these four sensors, gathered at a sampling rate of 100 Hz, were taken from a group of 25 volunteers (16 females and 9 males), aged between 18 and 56, during the performance of 29 daily life activities involving hand mobility. Participants wore the sensor node on their dominant hand throughout the experiments.

摘要

鉴于腕戴式设备,尤其是智能手表的普及,在人类活动识别(HAR)系统的研究领域中,手动运动模式的识别已成为人们最为关注的问题。在此背景下,通过利用智能手表中天然嵌入的众多传感器,可通过软件以非常经济高效的方式在手表中实现的HAR功能涵盖了广泛的应用,从健身追踪器到针对残疾人的手势探测器(例如用于发送警报),促进行为激活或健康的生活方式习惯。在这方面,对于能够有效区分这些活动的人工智能算法的开发而言,拥有运动存储库非常重要,这些存储库可让科学界训练、评估和对标运动探测器的新提案。UMAHand数据集提供了一组文件,其中包含在执行不同典型手部动作期间,由Shimmer 3传感器节点捕获的信号,该传感器节点包括一个加速度计、一个陀螺仪、一个磁力计和一个气压计。为此,这四个传感器以100Hz的采样率收集的测量数据,来自一组25名志愿者(16名女性和9名男性),年龄在18至56岁之间,在进行29项涉及手部活动的日常生活活动期间。在整个实验过程中,参与者将传感器节点戴在其优势手上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验